Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x-1 là ước của 3x+2
<=>3x+2 là bội của 2x-1
=>2(3x+2) là bội của 2x-1
=>6x+4 là bội của 2x-1
=>6x-3+7 chia hết cho 2x-1
=>3(2x-1)+7 chia hết cho 2x-1
Mà 3(2x-1) chia hết cho 2x-1
=>7 chia hết cho 2x-1
=>2x-1 thuộc Ư(7)
=>2x-1 thuộc {-7;-1;1;7}
=>2x thuộc {-6;0;2;8}
=>x thuộc {-3;0;1;4}
Answer:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}\)
\(\Rightarrow\frac{x^2}{9}=\frac{2y^2}{32}=\frac{4z^2}{100}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{2y}{36}=\frac{4z^2}{100}=\frac{x^2+2y^2+4z^2}{9+32+100}=1\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))
=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)
Từ : x-y-z = 0
=>x – z = y; y – x = – z và y + z = x
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)
\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
a) \(N=\left|3x+8,4\right|-14,2\)
Vì \(\left|3x+8,4\right|\ge0\forall x\)\(\Rightarrow\left|3x+8,4\right|-14,2\ge-14,2\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow3x+8,4=0\)
\(\Leftrightarrow3x=-8,4\)\(\Leftrightarrow x=-2,8\)
Vậy \(minN=-14,2\)\(\Leftrightarrow x=-2,8\)
b) \(E=5,5-\left|2x-1,5\right|\)
Vì \(\left|2x-1,5\right|\ge0\forall x\)\(\Rightarrow-\left|2x-1,5\right|\le0\forall x\)
\(\Rightarrow5,5-\left|2x-1,5\right|\le5,5\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow2x-1,5=0\)
\(\Leftrightarrow2x=1,5\)\(\Leftrightarrow x=0,75\)
Vậy \(maxE=5,5\)\(\Leftrightarrow x=0,75\)
\(A=2^0+2^1+2^2+...+2^{21}\)
\(2A=2^1+2^2+2^3+...+2^{22}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{22}\right)-\left(2^0+2^1+2^2+...+2^{21}\right)\)
\(A=2^{22}-1\)
\(2^{22}-1=2^{2n}-1\)
\(2^{2\times11}-1=2^{2n}-1\)
n = 11
a,2x3.5x4=(2.5).(x3x4)=7x7
b,6x2.(-7xy4)=[6.(-7)].(x2xy4)= -42x3y4