K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

A=/x-2010/+/x-2012/+/x-2014/

=/x-2012/+/2014-x/+/x-2010/>=/x-2012/+/2014-x+x-2010/=/x-2012/+4

lại có /x-2012/>=0

=>A>=4

=>min A=4 khi đó\(\hept{\begin{cases}x-2012=0\\\left(x-2012\right)\left(x-2014\right)< =0\end{cases}}< =>\hept{\begin{cases}x=2012\\2012< =x< =2014.\end{cases}}\)

=>x=2012 (tmđk)

8 tháng 11 2017

a, Vì |x-2y| >=0 và (x-3)^2010 = (x-3)^2.1005 = [(x-2)^1005]^2 >=0

=> |x-2y|+(x-3)^2010 >=0

=> C >= 7

Dấu "=" xảy ra<=> x-2y = 0 và x-3=0 <=>x=3 ; y= 3/2

Vậy Min C = 7 <=>x=3;y=3/2

b, Vì |x+5|>=0 nên 2014-|x+5| <= 2014

=> D = 2016/(2014-|x+5|) >= 2016/2014 = 1008/1007

Dấu "=" xảy ra <=> x+5 = 0<=> x= -5

Vậy Min D = 1008/1007 <=> x= -5 

18 tháng 12 2021

Answer:

\(A=\left|2x-3\right|-2014\)

Mà \(\left|2x-3\right|\ge0\forall x\Rightarrow\left|2x-3\right|-2014\ge-2014\forall x\)

Dấu "=" xảy ra khi: \(\left|2x-3\right|=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)

Vậy giá trị nhỏ nhất của \(A=-2014\) khi \(x=\frac{3}{2}\)

\(B=x+\left|x\right|\)

Trường hợp 1: \(x\ge0\Rightarrow B=x+x=2x\ge0\left(1\right)\)

Trường hợp 2: \(x\le0\Rightarrow B=x-x=0\left(2\right)\)

Từ (1) và (2) \(\Rightarrow B\ge0\forall x\)

Vậy giá trị nhỏ nhất của \(B=0\) khi \(x\le0\)

\(C=\left|x-2013\right|+\left|x-2014\right|\)

Có: \(\hept{\begin{cases}\left|x-2013\right|\ge x-2013\forall x\\\left|x-2014\right|\ge-x+2014\forall x\end{cases}}\)

\(\Rightarrow\left|x-2013\right|+\left|x-2014\right|\ge x-2013-x+2014\forall x\)

\(\Rightarrow C\ge1\forall x\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}\left|x-2013\right|\ge0\\\left|x-2014\right|\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2013\\x\le2014\end{cases}}\Rightarrow2013\le x\le2014\)

Vậy giá trị nhỏ nhất của \(C=1\) khi \(2013\le x\le2014\)

\(D=\left|x-4\right|+\left|x-5\right|+\left|x-7\right|\)

Có: \(\hept{\begin{cases}\left|x-4\right|\ge0\forall x\\\left|x-7\right|\ge0-x+7\forall x\end{cases}}\Rightarrow\left|x-4\right|+\left|x-7\right|\ge3\forall x\left(1\right)\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}\left|x-4\right|\ge0\\\left|x-7\right|\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge4\\x\le7\end{cases}}\Rightarrow4\le x\le7\)

Có: \(\left|x-5\right|\ge0\left(2\right)\)

Dấu "=" xảy ra khi: \(x=5\)

Từ (1) và (2) \(\Rightarrow D\ge3\)

Dấu "=" xảy ra khi \(D\ge3\Rightarrow\hept{\begin{cases}4\le x\le7\\x=5\end{cases}}\Rightarrow x=5\)

Vậy giá trị nhỏ nhất của \(D=3\) khi \(x=5\)

12 tháng 4 2016
  • Có:  /x2 - 4/ >= 0 Vx

=>/x2 - 4/ - 2014 >= -2014 Vx

Dấu = xảy ra <=> x2 - 4 = 0

<=> x2 = 4

<=> x = 2

=> Amin =-2014 <=> x = 2

  • Có -x2 <= 0 Vx

=>  -x2 + 1 <= 1 Vx

Dấu = xảy ra <=> -x2 = 0

<=> x = 0

=>Amax = 1 <=> x = 0

  • Có (5x+2)2 >= 0 Vx

5 - (5x+2)<= 5

Dấu = xảy ra <=> 5x+2 = 0

<=> 5x = -2

<=> x = -2/5

=> Bmax = 5 <=> x = -2/5

  • Có-/x^2+7/ <= 0 Vx

=> 2015-/x^2+7/ <= 2015 Vx

Dấu = xảy ra <=> x^2+7 = 0

<=> x2 = -7

<=> x = \(\sqrt{-7}\)

=> C max = 2015 <=> x = \(\sqrt{-7}\)

22 tháng 4 2016

Thanks bạn nhìu ^_^

1 tháng 7 2018

\(A=\frac{2014-x}{2015-x}\)

\(\Rightarrow A=\frac{2015-x-1}{2015-x}\)

\(\Rightarrow A=1-\frac{1}{2015-x}\)

Để A có Min thì \(\frac{1}{2015-x}\)có GTLN \(\Rightarrow2015-x\)phải đạt GTNN và \(\frac{1}{2015-x}>0\)

\(\Rightarrow2015-x=1\Leftrightarrow x=2014\)

Vậy Min A = 1-1=0<=> x = 2014

8 tháng 7 2017

\(A=\frac{2015-x-1}{2015-x}=1-\frac{1}{2015-x}\)

A nhỏ nhất khi \(\frac{1}{2015-x}>0\)lớn nhất, để \(\frac{1}{2015-x}\)lớn nhất khi 2015-x>0 nhỏ nhất. 2015-x nhỏ nhất khi x lớn nhất và x là số nguyên dương => x=2014