\(2x^2 + 10x - 1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

a, Ta có: \(B=2x^2+10x-1=2x^2+10x+\dfrac{25}{2}-\dfrac{27}{2}\)

\(=2\left(x^2+2.x.\dfrac{5}{2}+\dfrac{25}{4}\right)-\dfrac{27}{2}\)

\(=2\left(x+\dfrac{5}{2}\right)^2-\dfrac{27}{2}\ge\dfrac{-27}{2}\)

Dấu " = " khi \(2\left(x+\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{-5}{2}\)

Vậy \(MIN_B=\dfrac{-27}{2}\) khi \(x=\dfrac{-5}{2}\)

b, Ta có: \(C=5x-x^2=-\left(x^2-2.x.\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{25}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

Dấu " = " khi \(-\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)

Vậy \(MAX_C=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)

a) \(A=x^2-6x+11\)

\(\Rightarrow A=x^2-6x+9+2\)

\(\Rightarrow A=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = 3

Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)

b) \(B=2x^2+10x-1\)

\(\Rightarrow B=2\left(x^2+5\right)-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)

Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)

\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)

Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)

c) \(C=5x-x^2\)

\(\Rightarrow C=-\left(x^2-5x\right)\)

\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)

Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)

Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)

31 tháng 7 2016

hì^^!!Toán lớp 8

31 tháng 7 2016

camon bạn ạ

 

16 tháng 10 2016

1, ta có :

A = - ( x+ 10x + 11 ) = - ( x+ 2 .x.5 + 52 ) + 14 

= 14 - ( x + 5 )< hoặc = 14

suy ra GTLN của A = 14 

khi và chỉ khi  x + 5 = 0 

suy ra x = -5

Vậy GTLN của A = 14 , Khi và chỉ khi x = -5

MÌNH XIN LỖI BẠN NHƯNG MÌNH CHỈ BIẾT LÀM CÂU ĐẦU TIÊN THÔI

 

16 tháng 6 2016

A, x2+3x+7 = x2+2.x.3/2 +(3/2)2+19/4 = (x+3/2)2 + 19/4 >=19/4

B, = (x2-7x+10)(x2-7x-10) = (x2-7x)2 - 100 >= -100

C, = 5x2+5 >=5

17 tháng 6 2016

Bạn Nguyễn Anh Thọ có thể trình bày câu C rõ hơn không?

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

21 tháng 1 2020

\(A=2x^2-6x-\sqrt{7}\)

\(=2\left(x^2-3x-\sqrt{\frac{7}{2}}\right)\)

\(=2\left(x^2-3x+\frac{9}{4}-\frac{9+2\sqrt{7}}{4}\right)\)

\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{4}\right]\)

\(=2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\ge-\frac{9+2\sqrt{7}}{2}\)

Vậy \(Min_A=\frac{-9+2\sqrt{7}}{2}\Leftrightarrow x=\frac{3}{2}\)

a: \(A=3\left(x^2-\dfrac{4}{3}x+\dfrac{7}{3}\right)\)

\(=3\left(x^2-2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{17}{9}\right)\)

\(=3\left(x-\dfrac{2}{3}\right)^2+\dfrac{17}{3}>=\dfrac{17}{3}\)

Dấu '=' xảy ra khi x=2/3

b: \(=9x^2-6x+1+4x^2-20x+25-4\)

\(=13x^2-26x+22\)

\(=13\left(x^2-2x+\dfrac{22}{13}\right)\)

\(=13\left(x^2-2x+1+\dfrac{9}{13}\right)\)

\(=13\left(x-1\right)^2+9>=19\)

Dấu '=' xảy ra khi x=1