\(A=\left|x-3\right|+10\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

Ta có :  A = | x - 3 | + 10 > 0

           Vì  | x - 3 |\(\ge\)0

Dấu = Xảy ra <=> x = 3

Vậy gtnn của A = 10 <=> x = 3

5 tháng 8 2018

Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)

\(\Rightarrow A=\left|x-3\right|+10\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amin =10 khi và chỉ khi x = 3

Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmin = -7 khi và chỉ khi x = 1

Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Cmax = -3 khi và chỉ khi x = 2

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Dmax = 15 khi và chỉ khi x = 2

4 tháng 8 2017

a, A =I x - 3I +10

\(\Rightarrow A\ge10\)( I x - 3 I luôn lớn hơn hoặc  bằng 0 vs mọi x)

Dấu ''='' xảy ra khi x-3=0

                       <=>x = 3

Vậy giá trị nhỏ nhất của A là 10 khi x = 3

b, \(B=-7+\left(x-1\right)^2\)

\(\Rightarrow B\ge-7\forall x\)

Dấu ''='' xảy ra khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)

Vậy giá trị nhỏ nhất của B là -7 khi x=1

c, C= -3 - I x -2I

\(\Rightarrow C\le-3\)( Vì I x - 2 I luôn luôn lớn hơn hoặc bằng 0 với mọi x)

Dấu ''='' xảy ra khi và chỉ khi : x - 2 = 0 <=> x=2 

Vây giá trị lớn nhất của C là - 3 khi x = 2.

d, \(D=15-\left(x-2\right)^2\)

\(\Rightarrow D\le15\)

Dấu ''='' xảy ra khi và chỉ khi : x - 2 =0 <=> x =2

Vây giá trị lớn nhất của D là 15 khi x = 2

9 tháng 3 2020

Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)

GTNN của A là 25 khi và chỉ khi x=5

\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)

GTNN của B là -16 khi x=2

b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)

GTLN của C là -5 khi và chỉ khi x=-3

\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)

GTLN của D là 14 khi và chỉ khi x = -1

9 tháng 3 2020

a, Tìm giá trị nhỏ nhất của biểu thức:

A = \(|x-5|+25\)

Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất 

\(\Rightarrow\)\(|x-5|\)nhỏ nhất 

Mà  \(|x-5|\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\) \(|x-5|\)\(=0\)                                (1)

Thay (1) vào A, ta có:

A = 0 + 25

A = 25

Vậy giá trị nhỏ nhất của A là 25

\(B=-16+\left(x-2\right)^2\)

Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất

\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất

Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\left(x-2\right)^2\)\(=0\)                                   (2)

Thay (2) vào B, ta có :

B =  \(-16+0\)

B = \(-16\)

Vậy giá trị nhỏ nhất của B là -16

11 tháng 8 2020

c,\(43+x=2.5^2-\left(x-57\right)\)

\(< =>43+x=50-x+57\)

\(< =>2x=50+57-43\)

\(< =>x=\frac{107-43}{2}=32\)

d,\(-3.2^2\left(x-5\right)+7\left(3-x\right)=5\)

\(< =>-12.\left(x-5\right)+7.\left(3-x\right)=5\)

\(< =>-12x+60+21-7x=5\)

\(< =>-19x=5-81=-76\)

\(< =>x=-\frac{76}{-19}=4\)

11 tháng 8 2020

Bài 2: 

a) \(A=\left|x-3\right|+10\)

Vì \(\left|x-3\right|\ge0\forall x\)\(\Rightarrow\left|x-3\right|+10\ge10\forall x\)

hay \(A\ge10\)

Dấu " = " xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)

Vậy \(minA=10\Leftrightarrow x=3\)

b) \(B=-7+\left(x-1\right)^2\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-7+\left(x-1\right)^2\ge-7\forall x\)

hay \(B\ge-7\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=-7\Leftrightarrow x=1\)

15 tháng 10 2019

                                                                Bài giải

Câu F mình làm ở câu trước của bạn rồi nên giờ mình trả lời tiếp luôn nha ! Bài tìm GTLN tí nữa mifh làm cho ! Đang bận !

Câu 1 : Tìm GTNN

\(H=\left|2x+5\right|+\left|8-2x\right|\)

Áp dụng tính chất \(\left|A\right|\ge A\)Ta có :

\(\left|2x+5\right|\ge2x+5\text{ Dấu " = " xảy ra khi }2x+5\ge0\text{ }\Rightarrow\text{ }2x\ge-5\text{ }\Rightarrow\text{ }x\ge-\frac{5}{2}\)

\(\left|8-2x\right|\ge8-2x\text{ Dấu " = " xảy ra khi }8-2x\ge0\text{ }\Rightarrow\text{ }2x\le8\text{ }\Rightarrow\text{ }x\le4\)

\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge2x+5+8-2x\)

\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge13\text{ Dấu " = " xảy ra khi }-\frac{5}{2}\le x\le4\)

\(\text{Vậy }Min\text{ }H=13\text{ khi }-\frac{5}{2}\le x\le4\)

2 tháng 7 2019

a) Vì \(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi \(x-3=0\)

                                 \(\Rightarrow x=3\)

Vậy với nghiệm nguyên \(x=3\)thì phương trình đạt GTNN là A=2018

b)Vì \(\left|x-5\right|\ge0\)

\(\Rightarrow\left|x-5\right|+2016\ge2016\)

Dấu "=" xảy ra khi \(x-5=0\)

                                 \(\Rightarrow x=5\)

Vậy với nghiệm nguyên \(x=5\)thì phương trình đạt GTNN là B=2016

c) \(\text{C}=\frac{7}{x-3}\)nhỏ nhất khi \(x-3\)âm và đạt giá trị lớn nhất

\(\Rightarrow x-3< 0\)

Mà \(x\in Z\)

\(\Rightarrow x-3\le-1\)

Dấu "=" xảy ra khi \(x=-1+3=2\)

Vậy với nghiệm nguyên \(x=2\)thì phương trình đạt GTNN là \(\text{C}=\frac{7}{2-3}=-7\)

d)\(\text{D}=\frac{x+8}{x-5}=\frac{x-5+13}{x-5}=\frac{x-5}{x-5}+\frac{13}{x-5}=1+\frac{13}{x-5}\)

D nhỏ nhất khi \(1+\frac{13}{x-5}\)nhỏ nhất

\(1+\frac{13}{x-5}\)nhỏ nhất khi \(\frac{13}{x-5}\)nhỏ nhất

\(\frac{13}{x-5}\)nhỏ nhất khi \(x-5\)âm và đạt GTLN

\(\Rightarrow x-5< 0\)

Mà \(x\in Z\)

\(\Rightarrow x-5\le-1\)

Dấu "=" xảy ra khi \(x=-1+5=4\)

Vậy với \(x=4\)thì biểu thức đạt GTNN là \(\text{D}=1+\frac{4+8}{4-5}=1+\frac{12}{-1}=1-12=-11\)

~Học tốt^^~

2 tháng 7 2019

Phần kết luận: Vậy với x=...... thì "biểu thức"...

em sửa lại từ phương trình -> biểu thức nha :v a ghi vội nên không để ý