Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đẳng thức trái luôn luôn lớn hơn đẳng thức phải(nhờ bđt coossi) đấu = xảy ra <=> x=2 và y=-3
Tìm giá trị lớn nhất: Áp dụng \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)được: \(A\le\left|x\right|+\sqrt{2}+\left|y\right|+1=6+\sqrt{2}\)
Max A = \(6+\sqrt{2}\)khi chẳng hạn x=-2,y=-3
Tìm giá trị nhỏ nhất: Áp dụng \(\left|a-b\right|\ge\left|a\right|-\left|b\right|\)được: \(A\ge\left|x\right|-\sqrt{2}+\left|y\right|-1=4-\sqrt{2}\)
Min A=\(4-\sqrt{2}\)khi chẳng hạn x=2,y=3
Áp dụng BĐT cô-si,ta có:
\(\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\)>=2 căn bậc 4 của x.y
Vậy A>= -căn x-căn y - căn 4 của x.y=-(\(\sqrt{x}-\sqrt{y}\) )^2
Mà (\(\left(\sqrt{x}-\sqrt{y}\right)^2>=0\)
Suy ra A<=0
dấu = xảy ra khi và chỉ khi x=y
hình như là ko có max đâu ạ, bạn xem lại đề vs