K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

\(C=x^2+2y^2+2xy-2y=x^2+2xy+y^2+y^2-2y+1-1\)

\(=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\)

Dấu ''='' xảy ra khi x = -1 ; y = 1

Vậy GTNN của C bằng -1 tại x = -1 ; y = 1

12 tháng 8 2021

câu trước chỉ có GTNN thôi nhé 

\(D=-3x^2+2x-2=-3\left(x^2-\frac{2}{3}x\right)-2=-3\left(x^2-\frac{2}{3}x+\frac{1}{9}-\frac{1}{9}\right)-2\)

\(=-3\left(x-\frac{1}{3}\right)^2+\frac{1}{3}-2\le-\frac{5}{3}\)

Dấu ''='' xảy ra khi x = 1/3 

Vậy GTLN của D bằng -5/3 tại x = 1/3 

11 tháng 11 2018

\(A=x^2-4x-1\)

\(=x^2-4x+4-5\)

\(=\left(x-2\right)^2-5\) \(\ge-5\)

Dấu = xảy ra <=> x-2=0 <=> x=2

20 tháng 8 2020

Sửa đề:

\(C=x^2-4xy+5y^2-10y+6\)

\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)

\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)

Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)

20 tháng 8 2020

\(D=x^2-2xy+2y^2-2x-10y+20\)

\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)

\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)

Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)

8 tháng 1 2016

a\(A=-5\left(x+\frac{2}{5}\right)^2-3\le-3\)

dấu = xảy ra \(\Leftrightarrow x=-\frac{2}{5}\)