Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=3/2 thì biểu thúc đạt giá trị lớn nhất là 6,5
x=0 thì biểu thức C là số tự nhiên
\(A=\frac{x^2+15}{x^2+3}=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+13}\)
ĐỂ A ĐẠT GTLN <=> \(\frac{12}{x^2+3}\)ĐẠT GTLN <=> \(x^2+3\)PHẢI ĐẠT GTNN
XÉT \(\frac{12}{x^2+3}\)CÓ: \(x^2\ge0\Rightarrow x^2+3\ge3\)DẤU "=" XẢY RA <=> \(x=0\)
TẠI x=0 => \(\frac{12}{x^2+3}=\frac{12}{3}=4\)
=> MaxA=1+4=5 khi x=0
Với mọi x thì A= |x+5/8 | \(\ge\)0 .
Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.
Vậy GTNN (A)= 0 khi x= -5/8.
Ta có:
\(A=\left|x+\frac{5}{8}\right|\ge0\)
Dấu "=" xảy ra khi và chỉ khi x = -5/8
Vậy Min A = 0 khi và chỉ khi x = -5/8
Xét biểu thức \(\left(3x+4\right)^4-5\). Có \(\left(3x+4\right)^4\) có số mũ chẵn
\(\left(3x+4\right)^4\ge0\) hay giá trị nhỏ nhất của \(\left(3x+4\right)^4=0\)
Từ đó có giá trị nhỏ nhất của \(\left(3x+4\right)^4-5=0-5=-5\)
Vậy giá trị nhỏ nhất của biểu thức \(\left(3x+4\right)^4-5\) là \(-5\)
Bmax khi (x-6)^2 +3 = 3
<=>(x-6)^2 = 0
=>x-6 = 0
=>x = 6
lúc đó B=1/3
vậy Bmax=1/3 khi x=6
nếu thấy sai thi bạn kiểm tra hộ mình cái đề nha!!!(^_^)
Ta có: |a| - |b| \(\le\) |a - b|
Do đó: |x - 1004| - |x + 1003| \(\le\) |x - 1004 - x - 1003|
\(\le\) 2007
Vậy GTLN của A là 2007 khi x = -1013