Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,B\left(x\right)=x\left(x-3\right)-2\left(x+5\right)=x^2-3x-2x-10=x^2-5x-10\)
\(=x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-10=x\left(x-\frac{5}{2}\right)-\frac{5}{2}\left(x-\frac{5}{2}\right)-\frac{65}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0=>\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\ge-\frac{65}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x-\frac{5}{2}=0< =>x=\frac{5}{2}\)
Vậy minB(x)=-65/4 khi x=5/2
\(c,C\left(x\right)=2x\left(x+1\right)-3x\left(x+1\right)=2x^2+2x-3x^2-3x=-x^2-x\)
\(=-\left(x^2+x\right)=-\left(x^2+x+1-1\right)=-\left(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}-1\right)\)
\(=-\left[x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)-\frac{1}{4}\right]=-\left[\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\right]=\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0=>\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\le\frac{1}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)
Vậy maxC(x)=1/4 khi x=-1/2
\(A\left(x\right)=2x\left(x-1\right)-3\left(x-13\right)=2x^2-5x+39\)
\(=2\left(x^2-\frac{5}{2}x+\frac{39}{2}\right)=2\left(x^2-\frac{5}{4}x-\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+\frac{39}{2}\right)\)
\(=2\left[x\left(x-\frac{5}{4}\right)-\frac{5}{4}\left(x-\frac{5}{4}\right)\right]+\frac{287}{16}=2\left[\left(x-\frac{5}{4}\right)^2+\frac{287}{16}\right]=2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\)
Vì \(2\left(x-\frac{5}{4}\right)^2\ge0=>2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\ge\frac{287}{8}>0\) với mọi x
=>A(x) vô nghiệm (đpcm)
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
Bài này mài kiếm đâu ra z mk hềnh như bài này ta lm oy mk
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
- Ta có : \(A=\frac{1}{\left(2x-3\right)^2+5}\)
Nhận thấy A đạt giá trị lớn nhất \(\Leftrightarrow\frac{1}{A}\) đạt giá trị nhỏ nhất
Lại có : \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge5\)
=> \(\frac{1}{A}\) đạt giá trị nhỏ nhất là 5 tại x = 3/2
Vậy A đạt giá trị lớn nhất là \(\frac{1}{5}\) tại x = 3/2
- \(B=\frac{1}{x^2-2x+3}=\frac{1}{\left(x^2-2x+1\right)+2}=\frac{1}{\left(x-1\right)^2+2}\)
Tới đây bạn làm tương tự. ^^
a) \(|2x-1|\ge0\forall x\)
\(\Rightarrow A=5-|2x-1|\le5\forall x\)
\(A=5\Leftrightarrow|2x-1|=0\)\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Max A = 5 <=> x = 1/2
b) \(|x-2|\ge0\forall x\)\(\Rightarrow|x-2|+3\ge3\forall x\)
\(\Rightarrow B=\frac{1}{|x-2|+3}\le\frac{1}{3}\forall x\)
\(B=\frac{1}{3}\Leftrightarrow|x-2|=0\)\(\Leftrightarrow x=2\)
Vậy Max B = 1/3 <=> x = 2
a) \(A=5-\left|2x-1\right|\)
Ta có \(2x-1\le0\)
\(\Rightarrow5-\left|2x-1\right|\le5\)
Để A đạt GTLN \(\Leftrightarrow x=\frac{1}{2}\)
b) \(B=\frac{1}{\left|x-2\right|+3}\)
Ta có : \(\left|x-2\right|+3\ge3\)
và \(1>0\)
\(\Rightarrow\frac{1}{\left|x-2\right|+3}\le\frac{1}{3}\)
Để B đạt GTLN \(\Leftrightarrow x=2\)
a. Vì \(\left|x+2\right|\ge0\forall x\)\(\Rightarrow-\left|x+2\right|\le0\forall x\)
Dấu "=" xảy ra <=> - | x + 2 | = 0 <=> x + 2 = 0 <=> x = - 2
Vậy maxA = 0 <=> x = - 2
b. Vì \(\left|2x-3\right|\ge0\forall x\)\(\Rightarrow1-\left|2x-3\right|\le1\)
Dấu "=" xảy ra <=> | 2x - 3 | = 0 <=> 2x - 3 = 0 <=> x = 3/2
Vậy maxB = 1 <=> x = 3/2
a) \(A=-\left|x+2\right|\le0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left|x+2\right|=0\Rightarrow x=-2\)
Vậy Max(A) = 0 khi x=-2
b) \(B=1-\left|2x-3\right|\le1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|2x-3\right|=0\Rightarrow x=\frac{3}{2}\)
Vậy Max(B) = 0 khi x=3/2