Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .
\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)
\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)
Bài 2 :
a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).
Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)
Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)
\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)
b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)
Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)
Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)
\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)
Vì 1-x-2x^2>=0>>>2x^2-x-1<=0>>>-1<=x<=1/2
F(x)=1/2(x+2√(1-2x)(x+1)<=1/2(x+1-2x+x+1)(BĐT Cô-si)
<=1/2.2=1.
Dấu= xảy ra khi 1-2x=x+1 khi x=0(TM)
a: ĐKXĐ: \(\left\{{}\begin{matrix}-2< =x< =2\\x< >0\end{matrix}\right.\)
c: \(f\left(-x\right)=\dfrac{\sqrt{2-\left(-x\right)}-\sqrt{2+\left(-x\right)}}{-x}=\dfrac{\sqrt{2+x}-\sqrt{2-x}}{-x}=\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}=f\left(x\right)\)
Ta có : f(x) đạt giá trị lớn nhất <=> \(\frac{1}{f\left(x\right)}\) đạt giá trị nhỏ nhất
Xét : \(\frac{1}{f\left(x\right)}=\frac{x^2-2x+2016}{x^2}=\frac{2016}{x^2}-\frac{2}{x}+1\)
Đặt \(t=\frac{1}{x}\Rightarrow\frac{1}{f\left(x\right)}=2016t^2-2t+1=2016\left(t-\frac{1}{2016}\right)^2+\frac{2015}{2016}\ge\frac{2015}{2016}\)
\(\frac{1}{f\left(x\right)}\) đạt giá trị nhỏ nhất bằng \(\frac{2015}{2016}\)
Suy ra f(x) đạt giá trị lớn nhất bằng \(\frac{2016}{2015}\)
Dấu đẳng thức xảy ra khi và chỉ khi \(t=\frac{1}{2016}\Leftrightarrow x=2016\)