![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2A=-2x^2-2y^2+2xy+2x+2y=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)+2\)
\(=-\left(x-y\right)^2-\left(x-1\right)^2-\left(y-1\right)^2+2\le2\)
\(\Rightarrow GTLN.A=1\) khi \(x=y=1\)
Mr Lazy sai òi, \(2A=-2x^2-2y^2+2xy+4x+4y=-\left(x-1\right)^2-\left(y-1\right)^2-\left(x-y\right)^2+8\le8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(D=-x^2-y^2+xy+2x+2y\)
\(\Rightarrow D=-\dfrac{x^2}{2}+xy-\dfrac{y^2}{2}-\dfrac{x^2}{2}+2x-\dfrac{y^2}{2}+2y\)
\(\Rightarrow D=-\left(\dfrac{x^2}{2}-xy+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2x\right)-\left(\dfrac{y^2}{2}-2y\right)\)
\(\Rightarrow D=-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\dfrac{y}{\sqrt[]{2}}+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\sqrt[]{2}+2\right)-\left(\dfrac{y^2}{2}-2.\dfrac{y}{\sqrt[]{2}}.\sqrt[]{2}+2\right)+2+2\)
\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\)
mà \(\left\{{}\begin{matrix}-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2\le0,\forall x;y\\-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall x\\-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall y\end{matrix}\right.\)
\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\le4\)
\(\Rightarrow GTLN\left(D\right)=4\left(tạix=y=2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(A=x^4-2x^3+2x^2-2x+3\)
\(=\left(x^4+2x^2+1\right)-\left(2x^3+2x\right)+2\)
\(=\left(x^2+1\right)^2-2x\left(x^2+1\right)+2\)
\(=\left(x^2+1\right)\left(x^2-2x+1\right)+2\)
\(=\left(x^2+1\right)\left(x-1\right)^2+2\)
Vì \(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x^2+1\ge1\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}\left(x^2+1\right)\left(x-1\right)^2\ge0}\)
\(\Rightarrow A=\left(x^2+1\right)\left(x-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi x = 1
Vậy Amin = 2 khi x = 1
b, \(B=4x^2-2\left|2x-1\right|-4x+5=\left(4x^2-4x+1\right)-2\left|2x-1\right|+4=\left(2x-1\right)^2-2\left|2x-1\right|+4\)
đề sai ko
c, \(C=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow C=-\left(x-1\right)^2+5\le5\)
Dấu "=" xảy ra khi x=1
Vậy Cmin = 5 khi x = 1
2/
+) \(D=-x^2-y^2+x+y+3=-\left(x^2-x+\frac{1}{4}\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{7}{2}=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\)
Vì \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\left(y-\frac{1}{2}\right)^2\le0\end{cases}\Rightarrow-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le0}\Rightarrow D=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\le\frac{7}{2}\)
Dấu "=" xảy ra khi x=y=1/2
Vậy Dmax=7/2 khi x=y=1/2
+) Đề sai
+)bài này là tìm min
\(G=x^2-3x+5=\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu "=" xảy ra khi x=3/2
Vậy Gmin=11/4 khi x=3//2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{7}{2}-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)-\left(y^2-2.\frac{1}{2}y+\frac{1}{4}\right)=\frac{7}{2}-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le\frac{7}{2}\)
=> GTLN của A=7/2 <=> x=y=1/2
\(B=4-\left(\frac{x^2}{2}-2.\frac{1}{\sqrt{2}}.\frac{1}{\sqrt{2}}xy+\frac{y^2}{2}\right)-\left(\frac{1}{2}x^2-2.\frac{1}{\sqrt{2}}.\frac{\sqrt{2}}{1}x+2\right)-\left(\frac{1}{2}y^2-2.\frac{1}{\sqrt{2}}.\frac{\sqrt{2}}{1}y+2\right)\)
\(=4-\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)^2-\left(\frac{x}{\sqrt{2}}-\sqrt{2}\right)^2-\left(\frac{y}{\sqrt{2}}-\sqrt{2}\right)^2\le4\)
=> GTLN của B=4 <==> x=y=2
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=-x^2-y^2+xy+2x+2y\)
\(\Rightarrow2A=-2x^2-2y^2+2xy+4x+4y\)
\(=-\left(x^2-4x+4\right)-\left(y^2-y+4\right)-\left(x^2-2xy+y^2\right)+8\)
\(=8-\left(x-2\right)^2-\left(y-2\right)^2-\left(x-y\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
giá trị D lớn nhất khi
x=1=y
k nha!!
.......
giai tri D lon nhat khi x=1=y nhe ban