Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a^2>0. Nếu a^2= (-).(-); (+).(+) thì ta có
th1: (+) . (+) = (+) Chọn (+)2 a^2>0
th2: (-). (-) = (+) Chọn (-)2 a^2>0
Vậy...
làm bổ sung cho câu b) là : muốn A có giá trị nhỏ nhất thì (x-8)2 phải có giá trị nhỏ nhất mà giá trị nhỏ nhất của (x-8)2 là 0
=) A có giá trị nhỏ nhất là -2018
c) : muốn B có giá trị lớn nhất thì -(x+5)2 phải có giá trị lớn nhất mà -(x+5)2 có giá trị lớn nhất là \(\infty\)mà không có số nào là số lớn nhất =) B vẫn chỉ có giá trị lớn nhất là \(\infty\)
A=(2x-3)2+7
Vì (2x-3)2 \(\ge\) 0 với mọi x
=>(2x-3)2+7 \(\ge\) 7 với mọi x
=>AMin=7
Dấu "=" xảy ra<=>2x-3=0<=>x=3/2
B=15-|2x+1|
Vì |2x+1| \(\ge\) 0 với mọi x => -|2x+1| \(\le\) 0 với mọi x
=>15-|2x+1| \(\le\) 15 với mọi x
=>BMax=15
Dấu "=" xảy ra<=>2x+1=0<=>x=-1/2
\(C=\frac{6}{\left(3x+2\right)^2+18}\)
C lớn nhất <=> (3x+2)2+18 nhỏ nhất
Vì (3x+2)2+18 \(\ge\) 18 với mọi x
=>\(C\le\frac{6}{18}=\frac{1}{3}\)
=>CMax=1/3
Dấu "=" xảy ra <=> 3x+2=0<=>x=-2/3
D=(x2+2)2-21
Vì x2+2 \(\ge\) 2 với mọi x
=>(x2+2)2 \(\ge\) 22=4 với mọi x
=>(x2+2)2-21 \(\ge\) 4-21=-17 với mọi x
=>DMin=-17
Dấu "=" xảy ra<=>x=0
\(C=-3-\left(2-x\right)^2-\left(3-y\right)^2\)
Ta có : \(\left(2-x\right)^2\ge0\forall x\)
\(\left(3-y\right)^2\ge0\forall y\)
\(\Rightarrow C\ge-3\)Dấu bằng xảy ra <=> x = 2 ; y = 3
Vậy GTNN C là -3 <=> x = 2 ; y = 3