Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)
Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y+2\right|\ge0\forall x\\\left|z-3\right|\ge0\forall x\end{cases}\Rightarrow\left|x-1\right|+\left|y+2\right|+\left|z-3\right|\ge0\forall x;y;z}\)
Mà \(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)
\(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\\\left|z-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=3\end{cases}}\)
Vậy \(x=1;y=-2;z=3\)
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
a, \(2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
b, \(\left(2x-4\right)\left(9-3x\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}2x-4>0\\9-3x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}\Leftrightarrow2< x< 3}}\)
a. \(2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
b. \(\left(2x-4\right)\left(9-3x\right)>0\Leftrightarrow18x-6x-36+12x>0\Leftrightarrow24x>36\Leftrightarrow x>\frac{3}{2}\)
c. \(\frac{2}{3}x-\frac{3}{4}>0\Leftrightarrow\frac{2}{3}x>\frac{3}{4}\Leftrightarrow x>\frac{9}{8}\)
d. \(\left(\frac{3}{4}-2x\right)\left(\frac{-3}{5}+\frac{2}{-61}-\frac{17}{51}\right)\le0\)
\(\Leftrightarrow\frac{3}{4}-2x\le0\Leftrightarrow2x\le\frac{3}{4}\Leftrightarrow x\le\frac{3}{8}\)
e. \(\left(\frac{3}{2}x-4\right).\frac{5}{3}>\frac{15}{6}\Leftrightarrow\frac{3}{2}x-4>\frac{3}{2}\Leftrightarrow\frac{3}{2}x>\frac{11}{2}\Leftrightarrow x>\frac{11}{3}\)
a: M<=0
Dấu '=' xảy ra khi x=99
b: N=-|x+13|+5<=5
Dấu = xảy ra khi x=-13