\(\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

a,8a-8a2+3

=-8(a2-a)+3

=-8[a2-2a\(\dfrac{1}{2}\)+\(\left(\dfrac{1}{2}\right)^2\)-\(\dfrac{1}{4}\)]+3

=-8[(a-\(\dfrac{1}{2}\))2-\(\dfrac{1}{4}\)]+3

=-8(a-\(\dfrac{1}{2}\))2+2+3

=-8(a-\(\dfrac{1}{2}\))2+5

mà (a-\(\dfrac{1}{2}\))2\(\ge\)0

=>-8(a-\(\dfrac{1}{2}\))2\(\le\)0

=>-8(a-\(\dfrac{1}{2}\))2+5\(\le\)5

=> Gía trị lớn nhất biểu thức trên đạt được là 5( khi (a-\(\dfrac{1}{2}\))2=0\(\Leftrightarrow\)a=\(\dfrac{1}{2}\))

24 tháng 8 2020

1. a. \(A=8a-8a^2+3=-8\left(a-\frac{1}{2}\right)^2+5\)

Vì \(\left(a-\frac{1}{2}\right)^2\ge0\forall a\)\(\Rightarrow-8\left(a-\frac{1}{2}\right)^2+5\le5\)

Dấu "=" xảy ra \(\Leftrightarrow-8\left(a-\frac{1}{2}\right)^2=0\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)

Vậy Amax = 5 <=> a = 1/2

b. \(B=b-\frac{9b^2}{25}=-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\)

Vì \(\left(b-\frac{25}{18}\right)^2\ge0\forall b\)\(\Rightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\le\frac{25}{36}\)

Dấu "=" xảy ra \(\Leftrightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2=0\Leftrightarrow b-\frac{25}{18}=0\Leftrightarrow b=\frac{25}{18}\)

Vậy Bmax = 25/36 <=> b = 25/18

24 tháng 8 2020

a,\(A=8a-8a^2+3\)

       \(=-8\left(a^2-a\right)+3\)

       \(=-8\left(a^2-2a\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)+3\)

       \(=-8\left[\left(a-\frac{1}{2}\right)^2-\frac{1}{4}\right]+3\)

       \(=-8\left(a-\frac{1}{2}\right)^2+2+3\)

       \(=-8\left(a-\frac{1}{2}\right)^2+5\le5\forall a\) 

Dấu"=" xảy ra khi \(\left(a-\frac{1}{2}\right)^2=0\Rightarrow a=\frac{1}{2}\)

Vậy \(Max_A=5\)khi\(a=\frac{1}{2}\)

bài 2:

b,\(D=d^2+10e^2-6de-10e+26\)

\(=d^2-23de+\left(3e\right)^2+e^2-2.5e+5^2+1\)

\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\forall d,e\)

Dấu"=" xảy ra khi\(\orbr{\begin{cases}\left(d-3e\right)^2=0\\\left(e-5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}d=15\\e=5\end{cases}}}\)

vậy \(D_{min}=1\)khi \(d=15;e=5\)

c,:\(E=4x^4+12x^2+11\)

\(=\left(2x^2\right)^2+2.2x^2.3+3^2+2\)

\(=\left(2x^2+3\right)^2+2\ge2\forall x\)

còn 1 đoạn nx bạn tự lm tiếp,lm giống như D

        

       

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

9 tháng 5 2016

\(\frac{a^2+b^2}{a-2b}=2\Rightarrow a^2+b^2-2a+4b=0\Rightarrow\left(a-1\right)^2+\left(b+2\right)^2=5\)

Đặt \(a-1=x,b+2=y\Rightarrow x^2+y^2=5\), khi đó:

\(P=8a+4b=8\left(x+1\right)+4\left(y-2\right)=8x+4y\)

Áp dụng BĐT Cauchy-schwarz, ta có:

\(P^2=\left(8x+4y\right)^2\le\left(8^2+4^2\right)\left(x^2+y^2\right)=400\)

\(\Rightarrow P\le20\)

Vậy \(MaxP=20\) khi ...

15 tháng 7 2016

\(B=a^2\left(11-8a\right)+\left(2a-1\right)^3=11a^2-8a^3+\left(2a-1\right)^3=\left[\left(2a-1\right)^3-8a^3\right]+11a^2\)

\(=-12a^2+6a-1+11a^2=-a^2+6a-1=-\left(a^2-6a+9\right)+8=-\left(a-3\right)^2+8\)

Vậy giá trị lớn nhất của B là 8 tại a = 3

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

24 tháng 6 2017

Phân thức đại số