Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(-9x^2+24x-18=-\left(9x^2-2\times3x\times4+16+2\right)\)
\(=-\left(3x-4\right)^2-2\le-2\)
Các câu sau tương tự.
Ta có 3-x2-2x = -( x2 +2x+1+2)
= - (x+1)2 +2
Do -(x+1)2 < 0 vs mọi x
=> -(x+1)2 +2 <2
=> Max B = 2 <=> x = -1
\(\text{a)}\left(2x-1\right)^2+x+2\)
\(=4x^2-4x+1+x+2\)
\(=4x^2-3x+3\)
\(=\left(4x^2-3x+\frac{9}{16}\right)+\frac{39}{16}\)
\(=\left(2x+\frac{3}{4}\right)^2+\frac{39}{16}\)
\(\text{Vì}\left(2x-\frac{3}{4}\right)^2\ge0\)
\(\text{nên }\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)
Vậy \(GTNN=\frac{39}{16}\),dấu bằng xảy ra khi \(x=\frac{3}{8}\)
\(\text{b)}4-x^2+2x\)
\(=\left(-x^2+2x-1\right)+5\)
\(=-\left(x^2-2x+1\right)+5\)
\(=-\left(x-1\right)^2+5\)
\(\text{Vì }-\left(x-1\right)^2\le0\)
\(\text{nên }-\left(x-1\right)^2+5\le5\)
Vậy \(GTLN=5\), dấu bằng xảy ra khi \(x=1\)
\(\text{c)}4x-x^2\)
\(=\left(-x^2+4x-4\right)+4\)
\(=-\left(x^2-4x+4\right)-4\)
\(=-\left(x-4\right)^2-4\)
\(\text{Vì }-\left(x-4\right)^2\le0\)
\(\text{nên }-\left(x-4\right)^2-4\le-4\)
Vậy \(GTLN=-4\), dấu bằng xảy ra khi \(x=4\)
\(a,\left(2x-1\right)^2+\left(x+2\right)=4x^2-4x+1+x+2\)
\(=4x^2-3x+3\)
\(=4x^2-2.2.\frac{3}{4}x+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+3\)
\(=\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)
Dấu bằng xảy ra khi \(2x-\frac{3}{4}=0\Rightarrow x=\frac{3}{8}\)
Vậy \(x=\frac{3}{8}\)thì biểu thức đạt giá trị nhỏ nhất là \(\frac{39}{16}\)
\(b,4-x^2+2x=-\left(x^2-2x-4\right)\)
\(=-\left(\left(x-2\right)^2-8\right)\)
\(\left(x-2\right)^2-8\ge-8\)
\(-\left(\left(x-2\right)^2-8\right)\le8\)
Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy \(x=2\)thì biểu thức đạt giá trị lớn nhất là 8
\(c,4x-x^2=-\left(x^2-4x\right)\)
\(=-\left(\left(x-2\right)^2-4\right)\)
\(\left(x-2\right)^2-4\ge-4\)
\(\Rightarrow-\left(\left(x-2\right)^2-4\right)\le4\)
Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy giá trị lớn nhất của biểu thức là 4 khi x = 2