\(P=3-4x-x^2\)

Admin giúp em

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=-\left(x^2+4x-3\right)\)

\(=-\left(x^2+2.x.2+4-7\right)\)

\(=-\left(\left(x+2\right)^2-7\right)\)

\(=7-\left(x+2\right)^2\ge7\)

Max \(P=7\Leftrightarrow x+2=0\Rightarrow x=-2\)

26 tháng 7 2016

P=−(x2+4x−3)

=−(x2+2.x.2+4−7)

=−((x+2)2−7)

=7−(x+2)2≥7

Max P=7⇔x+2=0⇒x=−2

26 tháng 7 2016

\(P=3-4x-x^2\)

\(P=-\left(x^2+4x-3\right)\)

\(P=-\left(x^2+2.x.2+4-7\right)\)

\(P=-\left(\left(x+2\right)^2-7\right)\)

\(P=7-\left(x+2\right)^2\ge7\)

\(P_{MAX}=7\) khi \(x=-2\)

26 tháng 7 2016

\(P=3-4x-x^2\)

\(P=-\left(x^2+4x-3\right)\)

\(P=-\left(x^2+2.2x+4\right)+7\)

\(P=7-\left(x+2\right)^2\)

        Vì \(-\left(x+2\right)^2\le0\)

               Suy ra:\(7-\left(x+2\right)^2\le7\)

Dấu = xảy ra khi x+2=0

                           x=-2

    Vậy Max P=7 khi x=-2

 

22 tháng 10 2020

đặt y = 1/x suy ra y <=1,

ta có P = 1 -2y+2016y^2 

Tự làm tiếp nhé

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

12 tháng 6 2019

Đề phải là tìm GTNN chứ

12 tháng 6 2019

\(2x+x^2-10\)

\(=x^2+2x-10\)

\(=x^2+2\cdot1\cdot x+1-1+10\)

\(=\left(x+1\right)^2-1+10\)

\(=\left(x+1\right)^2+9\)

Có \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+9\ge9\)

\(\Rightarrow GTLN\left(2x+x^2-10\right)=9\)

                        với \(\left(x+1\right)^2=0;x=\left(-1\right)\)

20 tháng 3 2021

\(B=-2x^2-x+\frac{25}{8}=-\left(2x^2+x+\frac{1}{8}\right)+\frac{13}{4}=-\left(\sqrt{2}x+\frac{1}{2\sqrt{2}}\right)^2+\frac{13}{4}\le\frac{13}{4}\)

Dấu = xảy ra khi:

\(\sqrt{2}x+\frac{1}{2\sqrt{2}}=0\)

\(\Leftrightarrow x=-\frac{1}{4}\)

2 tháng 6 2015

\(3+15x-5x^2=-\left(5x^2-15x+11,25\right)+14,25=-5\left(x-1,5\right)^2+14,25\)

Do \(\left(x-1,5\right)^2\ge0\Rightarrow-5\left(x-1,5\right)^2\le0\Rightarrow-5\left(x-1,5\right)^2+14,25\le14,25\)

\(\Rightarrow MAX\)=14,25\(\Leftrightarrow\left(x-1,5\right)^2=0\Leftrightarrow x=1,5\)

24 tháng 2 2016

Nghe nhe ban cua toi  Giá trị lớn nhất của một phân thức đại số là khi mẫu thức nhỏ nhất thì phân thức sẽ càng lớn 

vậy ta chỉ cần tìm giá trị nhỏ nhất của mẫu la xong

x^2+x+1=x^2+x+1/4-1/4+1=(x^2+x+1/4)+3/4

=(x+1/2)^2+3/4 

=>>> 3/4 la gia tri nho nhất khi x=1/2 vay ta lay x=1/2 thế vào phân thúc A

Giá trị lớn nhất cua A=-7/3 

28 tháng 9 2016

\(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

Suy ra : \(A^2\le2\Rightarrow A\le\sqrt{2}\)

Vậy Max A = \(\sqrt{2}\) khi \(\hept{\begin{cases}x=y\\x=z\\x+y+z=\sqrt{2}\end{cases}\Leftrightarrow}x=y=z=\frac{\sqrt{2}}{3}\)

28 tháng 9 2016

tuyệt

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1