Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị nhỏ nhất của biểu thức:
\(A=4x^2+3y^2-6xy+6x-12y+20\)
Mình cần gấp, các bạn giúp mình nhé.
\(A=4x^2+3y^2-6xy+6x-12y+20\)
\(A=3\left(x^2-2xy+y^2\right)+6x-12y+x^2+20\)
\(A=3\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]+\left(x^2-6x+9\right)-1\)
\(A=3\left(x-y+2\right)^2+\left(x-3\right)^2-1\ge-1\)
Dấu bằng xảy ra tại x=3;y=5
\(a,6x^2-9x=3x\left(x-3\right)\)
\(b,x^3-2x^2-3x+6\)
\(=\left(x^3-2x^2\right)-\left(3x-6\right)\)
\(=x^2\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x^2-3\right)\left(x-2\right)\)
\(e,2x\left(x-y\right)-3y\left(x-y\right)\)
\(=\left(2x-3y\right)\left(x-y\right)\)
a) 6x2 - 9x
= 3x (2x - 3)
b) x3 - 2x2 - 3x + 6
= x2(x - 2) - 3 (x - 2)
=(x - 2) (x2 - 3)
c) x2 - 4x + 4 - 9y2
= (x - 2)2 - 9y2
=(x - 2 - 3y)(x - 2 + 3y)
e) 2x(x - y) - 3y(x - y)
= (x - y)(2x - 3y)
xin lỗi mình học ngu nên không biết làm nhìu nha
\(x^2-2x+\left(x-2\right)^2\)
\(=x^2-2x+x^2-4x+4\)
\(=2x^2-6x+4\)
\(=2.\left(x^2-3x+2\right)\)
\(=2.\left[\left(x^2-x\right)-\left(2x-2\right)\right]\)
\(=2.\left[x.\left(x-1\right)-2.\left(x-1\right)\right]\)
\(=2.\left(x-1\right)\left(x-2\right)\)
\(a,x^2-4x+4y^2+12y+13\)
Ta có :
\(A=x^2-4x+4y^2+12y+13\)
\(=\left(x^2-4x+2^2\right)+\left(\left(2y\right)^2+12y+3^2\right)\)
\(=\left(x-2\right)^2+\left(2y+3\right)^2\)
Vì \(\left(x-2\right)^2\ge0\)\(\forall x\in R\)
\(\left(2y+3\right)^2\ge0\) \(\forall x\in R\)
\(\Rightarrow A=x^2-4x+4y^2+12y+13\ge0\) \(\forall x\in R\)
Dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2=0\\2y+3=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{3}{2}\end{cases}}\)
Vậy \(min_A=0\) khi \(x=1\) và \(y=-\frac{3}{2}\)
a)\(A=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu = khi \(x=\frac{-1}{2}\)
Vậy MinA=10 khi \(x=\frac{-1}{2}\)
b)\(B=3x^2-6x+1\)
\(=3x^2-6x+3-2\)
\(=3\left(x^2-2x+1\right)-2\)
\(=3\left(x-1\right)^2-2\ge-2\)
Dấu = khi \(x=1\)
Vậy MinB=-2 khi \(x=1\)
c)\(C=x^2-2x+y^2-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
2.) A=x2-6x+15=(x-3)2+6
Vì (x-3)2>=0 với mọi x
=> (x-s)2+6>=6 với mọi x
hay A>=6 với mọi x
Dấu = xảy ra <=> x-3=0 <=> x=3
Vậy....
B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10
vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y
6>0
=> (x-2)2+(2y+1)2 + 6>=6 với mọi x;y
hay B>=6 với mọi x;y
Dấu = xảy ra <=> x-2=0 và 2y+1=0
<=> x=2 và y=-1/2
Vậy....
3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7
vì -(x-2)2<=0 với mọi x
=> -(x-2)2+7<=7 với mọi x
hay A<=7 với mọi x
Dấu = xảy ra <=> x-2=0 <=> x=2
Vậy....
B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7
vì -(x-1)2<=0 với mọi x
-(3y+1)2<=0 với mọi y
suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y
=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y
hay A<=7 với mọi x, y
Dấu = xảy ra <=> x-1=0 và 3y+1=0
<=> x=1 và y=-1/3
vậy...