![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=-\left(4x^2-4xy+y^2\right)-\left(y^2-2y+1\right)+4\)
\(A=4-\left(2x-y\right)^2-\left(y-1\right)^2\le4\)
\(A_{max}=4\) khi \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)
Chúc bạn học tốt !!!
\(-4x^2+4xy-2y^2+2y+3\)
\(=-\left(4x^2+4xy+y^2\right)-\left(y^2-2y+1\right)+4\)
\(=-\left(2x+y\right)^2-\left(y-1\right)^2+4\)
Ta có \(\left(2x+y\right)^2\ge0\) \(\forall x,y\) \(;\left(y-1\right)^2\ge0\) \(\forall y\)
=> \(\left(2x+y\right)^2+\left(y-1\right)^2\ge0\) \(\forall x,y\)
=> \(-\left(2x+y\right)^2-\left(y-1\right)^2\le0\) \(\forall x,y\)
=> \(-\left(2x+y\right)-\left(y-1\right)^2+4\le4\) \(\forall x,y\)
\(MaxA=4\Leftrightarrow\hept{\begin{cases}\left(y-1\right)^2=0\\\left(2x+y\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}y-1=0\\2x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\x=-\frac{1}{2}\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(x^2-4x+8=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)
\(\Rightarrow\frac{1}{x^2-4x+8}\le\frac{1}{4}\)
Dấu "=" xảy ra khi \(x=2\)
Bài toán không có giá trị nhỏ nhất.Giải toán có sự trợ giúp của Wolfram|Alpha
![](https://rs.olm.vn/images/avt/0.png?1311)
A lớn nhất \(\Leftrightarrow x^2-4x+9\)nhỏ nhất
\(x^2-4x+9\Leftrightarrow\left(x-2\right)^2+5\ge5\)
Vậy \(MaxA=\frac{1}{5}\Leftrightarrow x=2\)
A lớn nhất khi x^2-4x+9 nhỏ nhất
Ta có x^2-4x+9=(x^2-4x+4)+5
=(x-2)^2+5
Mà (x-2)^2≥0 với mọi x
=) (x-2)^2+5≥5 với mọi x.
=)A ≤ 1/5
Dấu "=" xảy ra khi:
x-2=0 =) x=2
Vậy Max A=1/5 (=) x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{3-4x}{2x^2+2}\)
\(\Leftrightarrow2Ax^2+2A=3-4x\)
\(\Leftrightarrow2Ax^2+4x+2A-3=0\)
*Nếu A = 0 thì \(x=\frac{3}{4}\)
*Nếu A # 0 thì pt trên là pt bậc 2
Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow4-2A\left(2A-3\right)\ge0\)
\(\Leftrightarrow4-4A^2+6A\ge0\)
\(\Leftrightarrow-\frac{1}{2}\le A\le2\)
Vì \(-\frac{1}{2}< 0\Rightarrow\hept{\begin{cases}A_{min}=-\frac{1}{2}\Leftrightarrow x=...\\A_{max}=2\Leftrightarrow x=...\end{cases}}\)(CHỗ ... là tự làm nhé)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ : \(x\ge0\)
\(A=-x-\left|4x-9\right|+3\sqrt{x}+4\)
\(A=-\left(x-3\sqrt{x}+\frac{9}{4}\right)-\left|4x-9\right|+\frac{25}{4}\)
\(A=-\left(\sqrt{x}-\frac{3}{2}\right)^2-\left|4x-9\right|+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(\sqrt{x}-\frac{3}{2}\right)^2=0\\\left|4x-9\right|=0\end{cases}\Leftrightarrow x=\frac{9}{4}}\)
...
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
Ta có x^2 > hoặc =0
để 3-4x/x^2 đạt MAX
=> x > o và x bế nhất
=> x= 1
=> MAX D = -1