\(A=\frac{y}{5-\left(x+y\right)}\) với x, y là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

                                            Giải

Ta có : x + y \(\ne\)

Xét x + y \(\le\)4 : 

-Nếu y = 0 thì A = 0 

-Nếu 1 \(\le\)\(\le\)3 thì A = \(\frac{y}{5-\left(x+y\right)}\le3\)

-Nếu y = 4 thì x = 0 và A = 4 

Xét x + y \(\ge6\)thì A = \(\frac{y}{5-\left(x+y\right)}\le0\)

So sánh các giá trị trên của A ,ta thấy MAX A = 4 và chỉ khi x = 0 ; y = 4 .

8 tháng 5 2016

A = x +y +1 => A - 1 = x +y.

Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0

=> (A +1)(A +4) <= 0 => - 1 <= A <= -4

A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1

A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4

Vậy minA = -1 khi x = -1, y = 0

maxA = -4 khi x = -4, y = 0

8 tháng 6 2016

\(P=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{2xy}{\sqrt{\left(x-1\right)\left(y-1\right)}}\)

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

\(\sqrt{y-1}=\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\)

\(P\ge\frac{2xy}{\frac{xy}{4}}=2xy.\frac{4}{xy}=8\)

Dấu bằng xảy ra khi và chỉ khi x=y=2

31 tháng 8 2016

10 

có bài tuong tự rồi nhé