Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x +y +1 => A - 1 = x +y.
Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0
=> (A +1)(A +4) <= 0 => - 1 <= A <= -4
A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1
A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4
Vậy minA = -1 khi x = -1, y = 0
maxA = -4 khi x = -4, y = 0
\(P=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{2xy}{\sqrt{\left(x-1\right)\left(y-1\right)}}\)
\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)
\(\sqrt{y-1}=\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\)
\(P\ge\frac{2xy}{\frac{xy}{4}}=2xy.\frac{4}{xy}=8\)
Dấu bằng xảy ra khi và chỉ khi x=y=2
Giải
Ta có : x + y \(\ne\)5
Xét x + y \(\le\)4 :
-Nếu y = 0 thì A = 0
-Nếu 1 \(\le\)y \(\le\)3 thì A = \(\frac{y}{5-\left(x+y\right)}\le3\)
-Nếu y = 4 thì x = 0 và A = 4
Xét x + y \(\ge6\)thì A = \(\frac{y}{5-\left(x+y\right)}\le0\)
So sánh các giá trị trên của A ,ta thấy MAX A = 4 và chỉ khi x = 0 ; y = 4 .