Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DKXD :\(\frac{5}{3}\)\(\le\)\(x\le\)\(\frac{7}{3}\)
áp dụng bdt phụ : ( a + b )\(^2\)\(\ge\)2( a\(^2\) + b\(^2\)) ta duoc :
( \(\sqrt{3x-5}\)+ \(\sqrt{7-3x}\))\(^2\)\(\le\)2(\(3x-5+7-3x\)) = 4
\(\Rightarrow\)0\(\le\)\(\sqrt{3x-5}\)+\(\sqrt{7-3x}\)\(\le\)2
dau '=' xay ra \(\)\(\Leftrightarrow\)\(3x-5=7-3x\)
\(\Leftrightarrow\)\(x=2\)(thỏa mãn DKXD )
Vay GTLN cua A= 2 \(\Leftrightarrow\)\(x=2\)
ap dung bdt cauchy-schwarz ta co
\(A=\sqrt{3x-5}+\sqrt{7-3x}\) \(\le\sqrt{\left(1^2+1^2\right)\left(3x-5+7-3x\right)}=\sqrt{4}=2\)
dau = xay ra khi \(\frac{1}{3x-5}=\frac{1}{7-3x}\Leftrightarrow x=2\)
bạn tham khảo nhé
áp dụng BĐt cô si ta có
\(\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1}{2}+\frac{7-3x+1}{2}=2\)
Vậy A max=2
\(A^2=2+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)\(\le2+\left(3x-5\right)+\left(7-3x\right)=4\)
đẳng thức khi 3x-5=7-3x
6x=12=> x=2
A>0 => A=4
maxA=4
\(A=\frac{4\sqrt{x}}{3x-\sqrt{x}+3}\left(đk:x\ge0\right)\Rightarrow3Ax-A\sqrt{x}+3A=4\sqrt{x}\Leftrightarrow3Ax-\left(A+4\right)\sqrt{x}+3A=0\)\(\left(1\right)\)
- \(Xét:A=0\Rightarrow x=0\)
- \(Xét:A\ne0,coi\left(1\right)là\)\(ptb2\) \(ẩn\sqrt{x}\)
- \(Để\left(1\right)có\)\(nghiệm,thì:\)\(\frac{A+4}{3A}\ge0\Rightarrow A\ge0\)hoặc\(A\le-4\)
- Và đenta\(=\left(A+4\right)^2-36A^2=-35A^2+8A+16\ge0\)
- \(\Leftrightarrow\frac{-16}{35}\le A\le\frac{32}{35}\)\(\Rightarrow0\le A\le\frac{32}{35}\)
- \(\Rightarrow MinA=0\Leftrightarrow x=0\)
- \(MaxA=\frac{32}{35}\Leftrightarrow x=\left(\frac{3+\sqrt{265}}{16}\right)^2\)hoặc\(x=\left(\frac{3-\sqrt{265}}{16}\right)^2\)
Đk: x = \(5+2\sqrt{7}\)> 5
Đặt A = \(\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\)
A2 = \(\left(\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\right)^2\)
A2 = \(3x+\sqrt{6x-1}+3x-\sqrt{6x-1}-2\sqrt{\left(3x+\sqrt{6x-1}\right)\left(3x-\sqrt{6x-1}\right)}\)
A2 = \(6x-2\sqrt{9x^2-6x+1}\)
A2 = \(6x-2\sqrt{\left(3x-1\right)^2}\) (vì x > \(\frac{1}{3}\))
A2 = \(6x-2\left(3x-1\right)\)
A2 = \(6x-6x+2\)
A2 = 2
=> A = \(\sqrt{2}\)
Vậy ....
Đặt: \(A=\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\)
=> \(A^2=3x+\sqrt{6x-1}+3x-\sqrt{6x-1}-2\sqrt{\left(3x+\sqrt{6x-1}\right)\left(3x-\sqrt{6x-1}\right)}\)
=> \(A^2=6x-2\sqrt{9x^2-6x+1}\)
=> \(A^2=6x-2\sqrt{\left(3x-1\right)^2}\)
Mà: \(x=5+2\sqrt{7}\Rightarrow x>\frac{1}{3}\Rightarrow3x>1\Rightarrow3x-1>0\)
=> \(A^2=6x-2\left(3x-1\right)\)
=> \(A^2=6x-6x+2=2\)
Mà: \(\sqrt{3x+\sqrt{6x-1}}>\sqrt{3x-\sqrt{6x-1}}\Rightarrow A>0\)
=> \(A=\sqrt{2}\)
VẬY \(A=\sqrt{2}\)
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)(đk: \(\dfrac{7}{3}\le x\le\dfrac{5}{3}\))
áp dụng bđt bunhiacopxki cho các số không âm ta có:
\(A^2=\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le\left(1^1+1^1\right)\left[\left(\sqrt{3x-5}\right)^2+\left(\sqrt{7-3x}\right)^2\right]\)
\(\Leftrightarrow A^2\le2\cdot\left(3x-5+7-3x\right)\)
\(\Leftrightarrow A^2\le2\cdot2=4\Rightarrow A=2\)(do A>0)
max A=2
dấu bằng xảy ra khi và chỉ khi
\(\dfrac{3x-5}{1}=\dfrac{7-3x}{1}\)
\(\Leftrightarrow3x-5=7-3x\)
\(\Leftrightarrow6x=12\Leftrightarrow x=2\)(thỏa mãn đk)
vậy max A=2<=> x=2
Áp dụng bđt Bunhia copski ta có \(\left(\sqrt{3x-5}.1+\sqrt{7-3x}.1\right)^2\le\left[\left(\sqrt{3x-5}\right)^2+\left(\sqrt{7-3x}\right)^2\right]\left(1^2+1^2\right)\Leftrightarrow\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le\left(3x-5+7-3x\right).2\Leftrightarrow\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le4\Leftrightarrow\sqrt{3x-5}+\sqrt{7-3x}\le2\)Dấu = xảy ra khi \(\dfrac{\sqrt{3x-5}}{1}=\dfrac{\sqrt{7-3x}}{1}\Leftrightarrow3x-5=7-3x\Leftrightarrow6x=12\Leftrightarrow x=2\)
Vậy GTLN của biểu thức trên là 2 khi x=2
Lời giải:
Đặt \(A=\sqrt{3x-5}+\sqrt{7-3x}\)
Áp dụng BĐT Bunhiacopxky:
\(A^2=(\sqrt{3x-5}+\sqrt{7-3x})^2\leq (3x-5+7-3x)(1+1)\)
\(\Leftrightarrow A^2\leq 4\Rightarrow A\leq 2\). Dấu "=" xảy ra khi \(\frac{\sqrt{3x-5}}{1}=\frac{\sqrt{7-3x}}{1}\Leftrightarrow x=2\)
Vậy \(A_{\max}=2\) khi \(x=2\)