K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi 

4 tháng 10 2018

1;\(x^3+3x=3x^2+1\)

\(\Rightarrow x^3+3x-3x^2-1=0\)

\(\Rightarrow x^3-3x^2+3x-1=0\)

\(\Rightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x=1\)

2;\(x^2-3x\)

\(=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\left(-\frac{9}{4}\right)\ge-\frac{9}{4}\left[\left(x-\frac{3}{2}\right)^2\ge0\right]\)

Vậy Min \(x^2-3x=-\frac{9}{4}< =>x=\frac{3}{2}\)

15 tháng 10 2023

1, a) 

Ta có:

\(x^2+2x+1=\left(x+1\right)^2\)

Thay x=99 vào ta có:

\(\left(99+1\right)^2=100^2=10000\)

b) Ta có:

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Thay x=101 vào ta có:

\(\left(101-1\right)^3=100^3=1000000\)

24 tháng 8 2016

a) \(x^2\)\(+3x+7\)

=\(x^2\)\(+2.x.\frac{3}{2}\)\(+\frac{9}{4}\)\(+\frac{19}{4}\)

=\(\left(x+\frac{3}{2}\right)^2\)\(+\frac{19}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\)\(\ge0\)

Nên \(\left(x+\frac{3}{2}\right)^2\)\(+\frac{19}{4}\)\(\ge\frac{19}{4}\)

Dấu "=" xảy ra khi:

 \(x+\frac{3}{2}\)\(=0\)

\(\Rightarrow x=-\frac{3}{2}\)

Vậy GTNN của \(x^2\)\(+3x+7\) là \(\frac{19}{4}\) khi \(x=-\frac{3}{2}\)

b) \(-9x^2+12x-15\)

=\(-\left(9x^2-12x+15\right)\)

=\(-\left(\left(3x\right)^2-2.3x.2+4+11\right)\)

=\(-\left(\left(3x-2\right)^2+11\right)\)

=\(-\left(3x-2\right)^2-11\)

Vì \(\left(3x-2\right)^2\)\(\ge0\)

Nên \(-\left(3x-2\right)^2-11\le-11\)

Dấu "=" xảy ra khi:

\(3x-2=0\)

\(\Rightarrow x=\frac{2}{3}\)

Vậy GTLN của \(-9x^2+12x-15\) là \(-11\) khì \(x=\frac{2}{3}\)

c) \(11-10x-x^2\)

=\(-\left(x^2+10x-11\right)\)

=\(-\left(x^2+2.x.5+25-36\right)\)

=\(-\left(\left(x+5\right)^2-36\right)\)

=\(-\left(x+5\right)^2+36\)

Vì \(\left(x+5\right)^2\ge0\)

Nên \(-\left(x+5\right)^2+36\le36\)

Dấu "=" xảy ra khi:

 \(x+5=0\)

\(\Rightarrow x=-5\)

Vậy GTLN \(11-10x-x^2\) là \(36\) khi \(x=-5\)

d)\(x^4+x^2+2\)

=\(\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)

=\(\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}\)

Vì \(\left(x^2+\frac{1}{2}\right)^2\ge0\)

Nên \(\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Dấu "=" xảy ra khi:

 \(x^2+\frac{1}{2}=0\)

\(\Rightarrow x=\frac{1}{\sqrt{2}}\)

Vậy GTNN của \(x^4+x^2+2\) là \(\frac{7}{4}\) khi \(x=\frac{1}{\sqrt{2}}\)

 

 

 

 

 

 

23 tháng 8 2016

a) \(x^2+3x+7=x^2+2.1,5x+1,5^2+4,75=\left(x+1,5\right)^2+4,75\ge4,75\)

Đẳng thức xảy ra khi : \(x+1,5=0\Rightarrow x=-1,5\)

Vậy giá trị nhỏ nhất của x2 + 3x + 7 là 4,75 khi x = -1,5

b) \(-9x^2+12x-15=-\left(9x^2-12x+15\right)=-\left[\left(3x\right)^2-2.2.3x+2^2+11\right]\)

\(=-\left[\left(3x-2\right)^2+11\right]=-\left(3x-2\right)^2-11\le-11\)

Đẳng thức xảy ra khi :  \(3x-2=0\Rightarrow x=\frac{2}{3}\)

Vậy giá trị lớn nhất của -9x2 +12x - 15 là -11 khi \(x=\frac{2}{3}\)

23 tháng 8 2016

c) \(11-10x-x^2=-x^2-10x+11=-\left(x^2+10x-11\right)=-\left(x^2+2.5x+5^2-36\right)\)

\(=-\left[\left(x+5\right)^2-36\right]=-\left(x+5\right)^2+36\le36\)

Đẳng thức xảy ra khi : \(x+5=0\Rightarrow x=-5\)

Vậy giá trị lớn nhất của 11 - 10x -x2 là 36 khi x = -5. 

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Lời giải:

Ta có:

$x^2-3x+11=(x-\frac{3}{2})^2+\frac{35}{4}\geq \frac{35]{4}$

$\Rightarrow \frac{31}{x^2-3x+11}\leq 31:\frac{35}{4}=\frac{124}{35}$

$\Rightarrow \frac{31}{x^2-3x+11}+15\leq \frac{649}{35}$

Vậy gtln của biểu thức là $\frac{649}{35}$ khi $x=\frac{3}{2}$