Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy - Schwarz và BĐT phụ \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\Rightarrow M^2=\left(\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\right)^2\)
\(\le\left(1+1+1\right)\left(\frac{a}{b+c+2a}+\frac{b}{c+a+2b}+\frac{c}{a+b+2c}\right)\)
\(\le\frac{3}{4}\left(\frac{a}{b+a}+\frac{a}{c+a}+\frac{b}{b+c}+\frac{b}{b+a}+\frac{c}{c+a}+\frac{c}{c+b}\right)\)
\(=\frac{3}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{9}{4}\)
\(\Rightarrow M\le\frac{3}{2}\)
Dấu "= " xảy ra \(\Leftrightarrow a=b=c\)
\(\frac{\sqrt{ab}}{a+b+2c}\le\frac{\sqrt{ab}}{2\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{4}\)
Tương tự cộng lại ta được:
\(F\le\frac{\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}}{4}=\frac{3}{4}\)
Dấu "=" xảy ra tại a=b=c
\(Q=\sqrt{\left(a+b+c\right)a+bc}+\sqrt{\left(a+b+c\right)b+ca}+\sqrt{\left(a+b+c\right)c+ab}=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\le\dfrac{a+b+a+c+b+a+b+c+c+a+c+b}{2}=\dfrac{4\left(a+b+c\right)}{2}=2\left(a+b+c\right)=4\)
Dấu "=" xảy ra <=> \(a=b=c=\dfrac{2}{3}\)
Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D
Mấy bạn ơi , cho tớ hỏi:
Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?
Ai trả lời nhanh mình tích cho.
\(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)
\(=\sqrt{a\left(a+b+c\right)+bc}+\sqrt{b\left(a+b+c\right)+ca}+\sqrt{c\left(a+b+c\right)+ab}\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\le\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}+\frac{c+a+c+b}{2}\)
\(=2\left(a+b+c\right)=4\)
Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)