![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(E=\left(2x-5\right)^{10}-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)
\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy \(F_{min}=22\Leftrightarrow x=-5\)
\(G=17-\left|3x-2\right|\)
Dấu "=" xảy ra \(x=\dfrac{2}{3}\)
Vậy \(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A= 3x2 - 2x + 3
= 3(x2- 2/3x + 1/9 ) + 8/3
= 3(x-1/3)2 + 8/3 > 8/3 \(\forall\)x
dấu ''='' xảy ra <=> x = 1/3
/HT\
Nhầm đề rồi mấy bạn trả lời
Bảo là giá trị nguyên của ,\(\frac{2x-3}{3x+2}\) , các bạn ghi là \(3x^2-2x+3\)rồi
HT
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
\(C=\frac{12-3x}{4-x}+\frac{10}{4-x}=3+\frac{10}{4-x}\)
C lớn nhất <=> \(\frac{10}{4-x}\) lớn nhất <=> 4 - x bé nhất >0
Mà x nguyên
=>x=1
Thay vào ta có \(C=\frac{22-3.1}{4-1}=\frac{19}{4}\)
Vậy MAX(C)=19/4 khi x=1
C=\(\frac{22-3x}{4-x}=3+\frac{10}{4-x}\)để C lớn nhất thì \(\frac{10}{4-x}\) lớn nhất
mà x nguyên=> 4-x=1=> x=3
vậy GTLN của C=13 khi x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
Điều kiện : \(x\ne4\)
Biểu diễn : \(C=\frac{22-3x}{4-x}=\frac{3\left(4-x\right)+10}{4-x}=\frac{10}{4-x}+3\)
Ta có C đạt giá trị lớn nhất \(\Leftrightarrow\frac{10}{4-x}\)đạt giá trị lớn nhất \(\Leftrightarrow4-x\)đạt giá trị nhỏ nhất
Đến đây ta xét các trường hợp :
1. Với \(x>4\Rightarrow4-x< 0\Rightarrow\frac{10}{4-x}< 0\)
2. Với \(0\le x\le3\) \(\Rightarrow\frac{5}{2}\le\frac{10}{4-x}\le10\)
3. Với \(x< 0\), xét \(f\left(x\right)=4-x\) có giá trị càng tăng khi x càng giảm (x < 0) , do đó f(x) nhỏ nhất tại x = -1
\(\Rightarrow\frac{10}{4-x}=2\)
So sánh các trường hợp , được \(MaxC=13\Leftrightarrow x=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 4 - x \(\ne\)0 \(\Leftrightarrow\) x \(\ne\)4
C = \(\frac{12-3x+10}{4-x}\)=\(\frac{3\left(4-x\right)}{4-x}+\frac{10}{4-x}\)= \(3+\frac{10}{4-x}\)
Để C đạt GTLN thì \(\frac{10}{4-x}\)phải là GTLN, mà 10 là số nguyên dương nên 4 - x phải nguyên dương nhỏ nhất.
\(\Rightarrow\)4 - x = 1
\(\Leftrightarrow\)x = 3
Khi do: C = 13
Vậy GTLN của C =13 khi x = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có : \(|x-7|\ge0\)
\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)
Mà \(A=0\)
\(\Leftrightarrow5|x-7|=0\)
\(\Leftrightarrow x=7\left(2\right)\)
Từ (1) và (2) => max A = 124
b)
+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)
\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)
Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )
Còn lại bạn tự làm nha .
Cuối cùng ra \(_{max}B=\frac{7}{6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=2019\left(x-2y\right)^{2018}-\left(6y-3y\right)^{2018}-\left|xy-2\right|\\ \)
\(Do\left(x-2y\right)^{2018}\ge0\Rightarrow2019\left(x-2y\right)^{2019}\)
\(\left(6y-3x\right)^{2018}\ge0\Rightarrow-\left(6y-3x\right)^{2018}\le0\)
\(\left|xy-2\right|\ge0\Rightarrow-\left|xy-2\right|\le0\)=>\(M\le0-0-0=0.\)
GIá tri lon nhat cua Mla 0 khi va chi khi
\(\hept{\begin{cases}x-2y=0\\6y-3x=0\\xy-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\6y=3x\\xy=2\end{cases}\Rightarrow\hept{\begin{cases}x=2y\\y=\frac{1}{2}x\\xy=2\end{cases}}}\)
\(\Rightarrow xy=2y.y=2y^2\Rightarrow y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\)
vay ..........
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm các giá trị nhỏ nhất của các biểu thức
B=(x^4+5)^2
C=(x-1)^2+(y+2)^2
\(Q=3x-x^2=-\left(x^2-3x\right)=-\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}\right]\)
\(=-\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\)
Vì \(-\left(x-\frac{3}{2}\right)^2\le0\forall x\) nên \(Q=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\forall x\)
Dấu "=" xảy ra <=> \(-\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)
Vậy \(Q_{max}=\frac{9}{4}\Leftrightarrow x=\frac{3}{2}\)
bằng 2 các bạn ạ!