Tìm giá trị lớn  nhất của biểu thức:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tìm giá trị lớn  nhất của biểu thức:

Q = - x2 + 6x +1.

GTLN = 10

nha bạn 

18 tháng 8 2021

Q = 10 nhé

Câu 1: 

Để A>1 thì \(\dfrac{x+5}{x+8}-1>0\)

=>-3/x+8>0

=>x+8<0

hay x<-8

24 tháng 12 2016

Bài 2

\(\left|3x-101\right|=200\)

\(\Rightarrow3x-101=200\) hoặc \(3x-101=-200\)

\(\Rightarrow3x=301\) hoặc \(3x=-99\)

\(\Rightarrow x=\frac{301}{3}\) hoặc \(x=-33\)

Bài 3:

\(\left(7x-1\right)^{12}=25^6\)

\(\Rightarrow\left(7x-1\right)^{12}=\left(5^2\right)^6\)

\(\Rightarrow\left(7x-1\right)^{12}=5^{12}\)

\(\Rightarrow7x-1=5\)

\(\Rightarrow7x=6\)

\(\Rightarrow x=\frac{6}{7}\)

19 tháng 9 2019

1. A = 100

2. B = 2098

mik ko biết có đúng ko đâu nhé vì mình nhowfbanj làm cho rồi viết vô đây mà ahihi

20 tháng 8 2019

Mí bạn giúp mình với mình đang cần làm gấp X ((

19 tháng 9 2019

a) Biểu thức trên không có nghĩa khi \(\left(a-1\right)^2=0\)\(\Leftrightarrow a=1\)

b) Khi \(\orbr{\begin{cases}a-2=0\\b+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=2\\b=-5\end{cases}}\)

c) Khi \(a=0\)hoặc \(a=1\)hoặc \(b=0\)

d) Khi \(ab-a^2=0\)\(\Leftrightarrow a\left(b-a\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=b\end{cases}}\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

1 tháng 4 2018

Bài 1:1)
\(f\left(x\right)=x+7x^2-6x^3+3x^4+2x^2+6x-2x^4+1\\ =7x+9x^2+x^4-6x^3+1\)
Sắp xếp: \(x^4-6x^3+9x^2+7x+1\)
2) bậc đa thức : 4
hệ số tự do : 1
hệ số cao nhất : 9
3) \(f\left(-1\right)=x^4-6x^3+9x^2+7x+1\\ =\left(-1\right)^4-6.\left(-1\right)^3+9.\left(-1\right)^2+7.\left(-1\right)+1\\ =1-\left(-6\right)+9+\left(-7\right)+1=10\)
mấy câu kia tương tự
Bài 2:
1. \(P=A+B\\ =5x^2-3xy+7y^2+6x^2-8xy+9y^2\\ =11x^2-11xy+16y^2\)

\(Q=A-B\\ =5x^2-3xy+7y^2-\left(6x^2-8xy+9y^2\right)\\ =5x^2-3xy+7y^2-6x^2+8xy-9y^2\\ =-x^2+5xy-2y^2\)
2. \(M=P-Q\\ =11x^2-11xy+16y^2-\left(-x^2+5xy-2y^2\right)\\ =11x^2-11xy+16y^2+x^2-5xy+2y^2\\ =12x^2-16xy+18y^2 \)
Thay x=-1 và y=-2 có:
\(12x^2-16xy+18y^2\\ =12.\left(-1\right)^2-16.\left(-1\right).\left(-2\right)+18.\left(-2\right)^2=52\)

3.\(T=M-N\\ =12x^2-16xy+18y^2-3x^2+16xy-14y^2\\ =9x^2+4y^2\)
Ta có : 9x2 >0 và 4y2 >0 => T>0
=> T luôn nhận giá trị dương với mọi giá trị x, y

9 tháng 4 2018

Cảm ơn bạn haha