\(P=\dfrac{2012}{x^2+y^2-20\left(x+y\right)+2213}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

Để \(P=\dfrac{2012}{x^2+y^2-20\left(x+y\right)+2213}\) đạt giá trị lớn nhất

\(\Rightarrow x^2+y^2-20\left(x+y\right)+2213\) đạt giá trị nhỏ nhất

\(=x^2-20x+y^2-20x+2213\)

\(=x^2-20x+100+y^2-20y+100+2013\)

\(=\left(x-10\right)^2+\left(y-10\right)^2+2013\ge2013\)

Vậy \(P_{max}=\dfrac{2012}{2013}\) tại \(\left\{{}\begin{matrix}x=10\\y=10\end{matrix}\right.\)

8 tháng 3 2019

\(\frac{2012}{x^2+y^2-20\left(x+y\right)+2213}=\frac{2012}{\left(x^2-20x+100\right)+\left(y^2-20y+100\right)+2013}\)

\(=\frac{2012}{\left(x-10\right)^2+\left(y-10\right)^2+2013}\le\frac{2012}{2013}\)

\("="\Leftrightarrow x=y=10\)

NV
29 tháng 3 2021

\(P=\dfrac{2012}{\left(x^2+20x+100\right)+\left(y^2+20y+100\right)+2013}\)

\(P=\dfrac{2012}{\left(x+10\right)^2+\left(y+10\right)^2+2013}\le\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=y=-10\)

24 tháng 6 2017

Phân thức đại số

4 tháng 5 2017

a) giải phương trình

\(\dfrac{2x^2-3x-2^{ }}{_{ }x^2-4}\) = 2

=>\(\dfrac{2x^2-3x-2}{x^2-4}\) = \(\dfrac{2\left(x^2-4\right)}{x^2-4}\)

=>2x2 - 3x - 2 = 2(x2 - 4)

<=>2x2 -3x - 2 = 2x2 - 8

<=>2x2 - 2x2 - 3x = -8 + 2

<=>-3x = -6

<=> x = 2

Vậy không tồn tại giá trị nào của x thỏa mãn điều kiện của bài toán

b) Ta phải giải phương trình

\(\dfrac{6x-1}{3x+2}\) = \(\dfrac{2x+5}{x-3}\)

=>x = \(\dfrac{-7}{38}\)

c) Ta phải giải phương trình

\(\dfrac{y+5}{y-1}\) - \(\dfrac{y+1}{y-3}\) = \(\dfrac{-8}{\left(y-1\right)\left(y+1\right)}\)

không tồn tại giá trị nào của y thỏa mãn điều kiện của bài toán

3 tháng 5 2020

ctv hỏi bài

3 tháng 5 2020

Thái đức anh Ơ CTV là không được hỏi bài à ??? Bài này tôi làm ra lâu rồi,đăng lên chơi vui thôi nhé ! Không làm thì đừng có mà spam lung tung câu hỏi của tôi

8 tháng 5 2016

A = x +y +1 => A - 1 = x +y.

Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0

=> (A +1)(A +4) <= 0 => - 1 <= A <= -4

A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1

A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4

Vậy minA = -1 khi x = -1, y = 0

maxA = -4 khi x = -4, y = 0