\(\frac{16120x-14105}{2x^2+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

12 tháng 2 2019

Đặt: \(A=2x^2+5x+4\)

\(2A=4x^2+10x+8\)

\(2A=4x^2+10x+\frac{25}{4}+\frac{7}{4}\)

\(2A=\left(2x+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

\(A\ge\frac{7}{8}\rightarrow M\le\frac{5}{\frac{7}{8}}=\frac{40}{7}\)

9 tháng 2 2021

Ta có : x2 - 2x + 3 = ( x2 - 2x + 1 ) + 2 = ( x - 1 )2 + 2 ≥ 2 ∀ x

=> \(\frac{1}{x^2-2x+3}\le\frac{1}{2}\)

=> \(\frac{3}{x^2-2x+3}\le\frac{3}{2}\)

hay M ≤ 3/2

Đẳng thức xảy ra khi x = 1

Vậy MaxM = 3/2

21 tháng 11 2019

Ta có:

A = \(\frac{1}{2x^2+2x-5}\)

A = \(\frac{1}{2\left(x^2+x+\frac{1}{4}\right)-\frac{11}{2}}\)

A = \(\frac{1}{2\left(x+\frac{1}{2}\right)^2-\frac{11}{2}}\)

Do \(2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)=> \(2\left(x+\frac{1}{2}\right)^2-\frac{11}{2}\ge-\frac{11}{2}\forall x\)

=> \(\frac{1}{2\left(x+\frac{1}{2}\right)^2-\frac{11}{2}}\le\frac{1}{-\frac{11}{2}}=-\frac{2}{11}\forall x\)

Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\) <=> \(x=-\frac{1}{2}\)

Vậy MaxA = -2/11 <=> x = -1/2

1 tháng 1 2020

Ta có: A = \(\frac{3x^2-2x+3}{x^2+1}=\frac{3\left(x^2+1\right)-2x}{x^2+1}\)

\(=3+\frac{-2x}{x^2+1}=3+\frac{x^2-2x+1-\left(x^2+1\right)}{x^2+1}\)

\(=3+\frac{\left(x-1\right)^2}{x^2+1}-1\)

\(=\frac{\left(x-1\right)^2}{x^2+1}+2\ge2\forall x\)

Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1

Vậy MinA = 2 khi x = 1