\(C=\frac{I2x+1I+3}{-2009}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

giúp mình với mik cần gấp

19 tháng 2 2020

Vì \(\left|2x+1\right|\ge0\)\(\forall x\inℝ\) \(\Rightarrow\left|2x+1\right|+3\ge3\)\(\forall x\inℝ\)

\(\Rightarrow\frac{\left|2x+1\right|+3}{2009}\ge\frac{3}{2009}\)\(\forall x\inℝ\)\(\Rightarrow\frac{\left|2x+1\right|+3}{-2009}\le\frac{3}{-2009}\)

Dấu " = " xảy ra <=> 2x + 1 = 0 <=> x = -1/2

Vậy....

28 tháng 9 2016

a) Ta có: \(\left|2x-\frac{1}{3}\right|\ge0\)

\(\Rightarrow A=\left|2x-\frac{1}{3}\right|+107\ge107\)

\(\Rightarrow\)Dấu " =" xảy ra khi \(\left|2x-\frac{1}{3}\right|=0\)

                       \(\Rightarrow2x-\frac{1}{3}=0\)

                        \(\Rightarrow2x=\frac{1}{3}\)

                          \(\Rightarrow x=\frac{1}{6}\)

Vậy A đạt GTNN = 107 khi x = \(\frac{1}{6}\)

b) Ta có: \(\left|x+\frac{3}{5}\right|\ge0\)

\(\Rightarrow B=\left|x+\frac{3}{5}\right|-\frac{1}{2}\ge\frac{-1}{2}\)

=> Dấu" = " xảy ra khi \(\left|x+\frac{3}{5}\right|=0\)

                     \(\Rightarrow x+\frac{3}{5}=0\)

                     \(\Rightarrow x=\frac{-3}{5}\)

Vậy B đạt GTNN = \(\frac{-1}{2}\) Khi x = \(\frac{-3}{5}\)

24 tháng 3 2019

\(A=|x+1|+5\ge5\forall x\)

=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)

\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)

Ta có: \(x^2+3\ge3\forall x\)

Min x2 + 3 = 3 tại x = 0

Khi đó: Max B = 1+ 12/3 = 5 tại x = 0

=.= hk tốt!!

|x+1 lớn hơn hoặc bằng 0 

=> |x+1|+5 lớn hơn hoặc bằng 5

Dấu = xảy ra khi x+1=0 <=> x=-1

Vậy Min A = 5 khi x=-1 

28 tháng 8 2016

a) \(A=\left|x-\frac{2}{3}\right|-4\)

Có: \(\left|x-\frac{2}{3}\right|\ge0\)

\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)

Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\)  ( K có GTLN bạn nhé )

b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy:  \(Max_B=2\) tại \(x=-\frac{5}{6}\)

  \(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)

\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)

Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)

Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

13 tháng 4 2019

Cám ơn bạn Phạm Minh Hải giúp tôi giải bài toán này

31 tháng 3 2019

a) Ta có : \(|x-7|\ge0\)

\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)

Mà \(A=0\)

\(\Leftrightarrow5|x-7|=0\)

\(\Leftrightarrow x=7\left(2\right)\)

Từ (1) và (2) => max A = 124

b) 

+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)

\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)

Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )

Còn lại bạn tự làm nha .

Cuối cùng ra \(_{max}B=\frac{7}{6}\)

19 tháng 11 2015

a) |x + 1| > 0

|x + 1| + 5 > 5

\(\Rightarrow\) min A = 5 khi x = - 1

b) \(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)

x2 > 0

x2 + 3 > 3

\(\frac{1}{x^2+3}\le\frac{1}{3}\)

\(\frac{12}{x^2+3}\le4\)

\(1+\frac{12}{x^2+3}\le5\)

\(\Rightarrow\) max B = 5 khi x = 0