Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow A=\left|2x-\frac{1}{3}\right|+107\ge107\)
\(\Rightarrow\)Dấu " =" xảy ra khi \(\left|2x-\frac{1}{3}\right|=0\)
\(\Rightarrow2x-\frac{1}{3}=0\)
\(\Rightarrow2x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{6}\)
Vậy A đạt GTNN = 107 khi x = \(\frac{1}{6}\)
b) Ta có: \(\left|x+\frac{3}{5}\right|\ge0\)
\(\Rightarrow B=\left|x+\frac{3}{5}\right|-\frac{1}{2}\ge\frac{-1}{2}\)
=> Dấu" = " xảy ra khi \(\left|x+\frac{3}{5}\right|=0\)
\(\Rightarrow x+\frac{3}{5}=0\)
\(\Rightarrow x=\frac{-3}{5}\)
Vậy B đạt GTNN = \(\frac{-1}{2}\) Khi x = \(\frac{-3}{5}\)
\(A=|x+1|+5\ge5\forall x\)
=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)
\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có: \(x^2+3\ge3\forall x\)
Min x2 + 3 = 3 tại x = 0
Khi đó: Max B = 1+ 12/3 = 5 tại x = 0
=.= hk tốt!!
|x+1 lớn hơn hoặc bằng 0
=> |x+1|+5 lớn hơn hoặc bằng 5
Dấu = xảy ra khi x+1=0 <=> x=-1
Vậy Min A = 5 khi x=-1
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
a) Ta có : \(|x-7|\ge0\)
\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)
Mà \(A=0\)
\(\Leftrightarrow5|x-7|=0\)
\(\Leftrightarrow x=7\left(2\right)\)
Từ (1) và (2) => max A = 124
b)
+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)
\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)
Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )
Còn lại bạn tự làm nha .
Cuối cùng ra \(_{max}B=\frac{7}{6}\)
a) |x + 1| > 0
|x + 1| + 5 > 5
\(\Rightarrow\) min A = 5 khi x = - 1
b) \(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
x2 > 0
x2 + 3 > 3
\(\frac{1}{x^2+3}\le\frac{1}{3}\)
\(\frac{12}{x^2+3}\le4\)
\(1+\frac{12}{x^2+3}\le5\)
\(\Rightarrow\) max B = 5 khi x = 0
giúp mình với mik cần gấp
Vì \(\left|2x+1\right|\ge0\)\(\forall x\inℝ\) \(\Rightarrow\left|2x+1\right|+3\ge3\)\(\forall x\inℝ\)
\(\Rightarrow\frac{\left|2x+1\right|+3}{2009}\ge\frac{3}{2009}\)\(\forall x\inℝ\)\(\Rightarrow\frac{\left|2x+1\right|+3}{-2009}\le\frac{3}{-2009}\)
Dấu " = " xảy ra <=> 2x + 1 = 0 <=> x = -1/2
Vậy....