\(\frac{-7}{x^2-x+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

13 tháng 2 2019

a, ĐKXĐ: \(x\ne-3\) và \(x\ne\pm1\)

b, \(P=\frac{x\left(x+3\right)-11+x^2-3x+9}{x^3+27}:\frac{x^2-1}{x+3}\)

\(P=\frac{2x^2-2}{x^3+27}.\frac{x+3}{x^2-1}\)

\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x+3\right)\left(x^2-3x+9\right)}.\frac{x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2}{x^2-3x+9}\)

c, \(P=\frac{2}{x^2-3x+9}==\frac{2}{\left(x-\frac{3}{2}\right)^2+\frac{27}{4}}\le\frac{2}{\frac{27}{4}}=\frac{8}{27}\)

Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy P lớn nhất bằng \(\frac{8}{27}\) \(\Leftrightarrow x=\frac{3}{2}\)

\(P=\left(\frac{x}{x^2-3x+9}-\frac{11}{x^3+27}+\frac{1}{x+3}\right):\frac{x^2-1}{x+3}.\)

ĐKXĐ : \(x\ne-3;x\ne0\)

\(P=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2-3x+9\right)}-\frac{11}{\left(x+3\right)\left(x^2-3x+9\right)}+\frac{x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)

\(P=\left(\frac{x^2+3x-11+x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)

\(P=\frac{2x^2-2}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}=\frac{2\left(x^2-1\right)}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}\)

\(P=\frac{2}{x^2-3x+9}\)

27 tháng 1 2021

a, \(A=\left(\frac{3}{x^3+x}-\frac{4}{x^2+1}\right):\frac{1}{x}\)ĐKXĐ : \(x\ne0\)

\(=\left(\frac{3}{x\left(x^2+1\right)}-\frac{4x}{x\left(x^2+1\right)}\right)x=\frac{3-4x}{x\left(x^2+1\right)}.x\)

\(=\frac{3x-4x^2}{x\left(x^2+1\right)}=\frac{x\left(3-4x\right)}{x\left(x^2+1\right)}=\frac{3-4x}{x^2+1}\)

b, Theo bài ra ta có : \(\left|x-2\right|=2\)

\(\Leftrightarrow x-2=\pm2\Leftrightarrow x=4;0\)

Thay x = 0 vào phân thức trên : \(\frac{3-4.0}{0^2+1}=\frac{3}{1}=3\)( ktm vì ĐKXĐ : x khác 0 ) 

Thay x =4 vào phân thức trên : \(\frac{3-4.4}{4^2+1}=\frac{3-16}{16+1}=\frac{-13}{17}\)

Vậy \(A=-\frac{13}{17}\)

27 tháng 1 2021

a) ĐKXĐ : x3 + x \(\ne0\)

=> x(x2 + 1) \(\ne0\)

=> \(\hept{\begin{cases}x\ne0\\x^2+1\ne0\end{cases}}\)

\(A=\left(\frac{3}{x^3+x}-\frac{4}{x^2+1}\right):\frac{1}{x}=\left(\frac{3}{x\left(x^2+1\right)}-\frac{4}{x^2+1}\right):\frac{1}{x}\)

\(=\left(\frac{3}{x\left(x^2+1\right)}-\frac{4x}{x\left(x^2+1\right)}\right).x=\frac{\left(3-4x\right).x}{x\left(x^2+1\right)}=\frac{3-4x}{x^2+1}\)

b) Khi |x - 2| = 2

=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Khi x = 0 => A = \(\frac{3-4.0}{0^2+1}=\frac{-1}{1}=-1\)

Khi x = 4 => A = \(\frac{3-4.4}{4^2+1}=\frac{3-16}{16+1}=\frac{-13}{17}\)

26 tháng 1 2020

câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được

2. xét x^2- 6x + 10

= X^2 -6x +9 +1

=(x^2 -3 )^2 +1

Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R

=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R

=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)

=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R

Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0

=> x-3 = 0

=> x=3

Vậy giá tị lớn nhất của P là 1 đạt được khi x=3

31 tháng 8 2020

\(ĐKXĐ:x\ge0\)

\(\frac{3}{x-4\sqrt{x}+7}=\frac{3}{x-4\sqrt{x}+4+3}=\frac{3}{\left(\sqrt{x}-2\right)^2+3}\)

Vì \(\sqrt{x}\ge0\)\(\Rightarrow\sqrt{x}+2\ge2\)\(\Rightarrow\left(\sqrt{x}+2\right)^2\ge4\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2+3\ge7\)\(\Rightarrow\frac{3}{\left(\sqrt{x}-2\right)^2+3}\ge\frac{3}{7}\)

Dấu " = " xảy ra \(\Leftrightarrow x=0\)

Vậy \(minA=\frac{3}{7}\)\(\Leftrightarrow x=0\)

31 tháng 8 2020

\(A=\frac{3}{x-4\sqrt{x}+7}\)( ĐKXĐ : x ≥ 0 )

Để A đạt GTLN => x - 4√x + 7 đạt GTNN

Ta có : x - 4√x + 7 = [ ( √x )2 - 2.2.√x + 4 ] + 3

                              = ( √x - 2 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> √x - 2 = 0

                             <=> √x = 2

                             <=> x = 4 ( bình phương hai vế ) ( tmđk )

=> MaxA = 1 <=> x = 4

Không dám chắc ạ :(

1 tháng 12 2018

a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)

b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)

c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì 

\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)

d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của B là - 1 khi x = -1

2 tháng 12 2018

Thanks bạn ;)