Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{1}{\sqrt{5x+15}}\)
Để biểu thức trên có nghĩa :
\(\Rightarrow\sqrt{5x+15}\ge0\)
\(\Rightarrow5\left(x+3\right)\ge0\)
\(\Rightarrow x\ge-3\)
Vậy....
\(A=\sqrt{\left(x-4\right)^2+4}-12\ge\sqrt{4}-12=-10\)
\(\Rightarrow A_{min}=-10\) khi \(x=4\)
\(B=2\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}\ge2\sqrt{\frac{11}{4}}=\sqrt{11}\)
\(B_{min}=\sqrt{11}\) khi \(x=-\frac{3}{2}\)
\(C=\frac{3}{1+\sqrt{9-\left(x-1\right)^2}}\ge\frac{3}{1+\sqrt{9}}=\frac{3}{4}\) (để chặt chẽ thì cần tìm ĐKXĐ cho căn thức trước, bạn tự tìm)
Bài 2:
\(A=\sqrt{7-2x^2}\le\sqrt{7}\)
\(A_{max}=\sqrt{7}\) khi \(x=0\)
\(B=\sqrt{7-\left(2x+1\right)^2}+5\le\sqrt{7}+5\) (cần ĐKXĐ)
\(B_{max}=\sqrt{7}+5\) khi \(x=-\frac{1}{2}\)
\(C=7+\sqrt{1-\left(2x-1\right)^2}\le7+\sqrt{1}=8\) (cần tìm ĐKXĐ)
\(C_{max}=8\) khi \(x=\frac{1}{2}\)
\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
b/ Để R<-1 => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)
<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)
<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)
Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\) là sao vậy ạ?
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Bài làm:
a) Tại x = 2 thì giá trị của B là:
\(B=-\frac{10}{2-4}=\frac{-10}{-2}=5\)
b) Ta có:
\(A=\frac{x+2}{x+5}+\frac{-5x-1}{x^2+6x+5}-\frac{1}{1+x}\)
\(A=\frac{x+2}{x+5}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1}{x+1}\)
\(A=\frac{\left(x+2\right)\left(x+1\right)-5x-1-\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2+3x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x-4}{x+5}\)
c) Ta có: \(P=A.B=\frac{x-4}{x+5}\cdot\frac{-10}{x-4}=\frac{-10}{x+5}\)
Để \(-\frac{10}{x+5}\inℤ\Rightarrow\left(x+5\right)\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
=> \(x\in\left\{-15;-10;-7;-6;-4;-3;0;5\right\}\)
a) \(B=\frac{-10}{x-4}\)( ĐKXĐ : \(x\ne4\))
Tại x = 2 ( tmđk ) thì \(B=\frac{-10}{2-4}=\frac{-10}{-2}=5\)
b) \(A=\frac{x+2}{x+5}+\frac{-5x-1}{x^2+6x+5}-\frac{1}{1+x}\)
ĐKXĐ : \(x\ne-5,x\ne-1\)
\(A=\frac{x+2}{x+5}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1}{x+1}\)
\(A=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2+3x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}=\frac{x-4}{x+5}\)
c) \(P=A\cdot B=\frac{x-4}{x+5}\cdot\frac{-10}{x-4}=\frac{-10}{x+5}\)( ĐKXĐ : \(x\ne-5\))
Để P nguyên => \(\frac{-10}{x+5}\)nguyên
=> -10 chia hết cho x + 5
=> x + 5 thuộc Ư(-10) = { ±1 ; ±2 ; ±5 ; ±10 }
x+5 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | -4 | -6 | -3 | -7 | 0 | -10 | 5 | -15 |
Các giá trị của x đều tmđk
Vậy x = { -4 ; -6 ; -3 ; -7 ; 0 ; -10 ; 5 ; -15 }
câu a) ta có A=-(x2-3x+2)=-(\(x^2-2x.\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\) )=\(-\left(x-\frac{3}{2}\right)^2+\frac{1}{4}< =\frac{1}{4}\)
dấu = xảy ra <=> x=3/2 mấy câu dưới tương tự cậu dùng hằng đẳng thức là ra
B= \(-\left(x^2-4x+6\right)=-\left(x^2-4x+4+2\right)=-\left(x-2\right)^2-2\le-2\)
Dấu <<=>> xảy ra <=> x=2