Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-2x^2-10y^2+4xy+4x+4y+2016\)
\(=-2.\left(x^2+5y^2-4xy-4x-4y\right)+2016\)
\(=-2.\left(x^2+4y^2+4-4xy-4x+8y+y^2-12y+36\right)+2.36+2016\)
\(=-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\)
Ta có: \(\left(x-2y-2\right)^2+\left(y-6\right)^2\ge0\)
\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]\le0\)
\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\le2088\)
\(\Rightarrow A\le2088\)
Vậy giá trị lớn nhất của \(A=2088\) khi: \(\hept{\begin{cases}x-2y-2=0\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2y+2\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=6\end{cases}}\)
Để mik suy nghĩ đã sau đó mik trả lời giúp bạn nhé!
\(x^2-4xy+4y^2+3x^2-2x+\frac{1}{3}-\frac{1}{3}\\ =\left(x-2y\right)^2+3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)
khi \(x=\frac{1}{3},y=\frac{1}{6}\)
1) a) Đặt biểu thức là A
\(A=2x^2+4y^2-4xy-4x-4y+2017\)
\(A=\left(x-2y\right)^2+x^2-4x-4y+2017\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+x^2-6x+2017\)
\(A=\left(x-2y-1\right)^2+\left(x+3\right)^2+2008\)
Vậy: MinA=2008 khi x=-3; y=-2
3) a) \(A=\dfrac{1}{x^2+x+1}\)
\(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(\Rightarrow B\ge\dfrac{3}{4}\Rightarrow A\ge\dfrac{4}{3}\)
Vậy MinA là \(\dfrac{4}{3}\) khi x=-0,5
1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2
2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi a = 1
3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)
4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)
Do đó \(a^{2018}+b^{2019}=1+1=2\)
5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)
Câu 3:
\(B=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{13}{36}\right)\)
\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}< =\dfrac{13}{12}\)
Dấu '=' xảy ra khi x=1/6
Bài 4:
\(C=\left(x+y\right)^2-4\left(x+y\right)+1\)
=3^2-4*3+1
=9+1-12
=-2
\(D=-5\left(x^2+\dfrac{4}{5}x+\dfrac{1}{5}\right)\)
\(=-5\left(x^2+2\cdot x\cdot\dfrac{2}{5}+\dfrac{4}{25}+\dfrac{1}{25}\right)\)
\(=-5\left(x+\dfrac{2}{5}\right)^2-\dfrac{1}{5}< =-\dfrac{1}{5}\)
Dấu = xảy ra khi x=-2/5
a/ Đề sai, hệ số của \(y^2\) phải âm thì biểu thức mới tồn tại max
b/ \(B=-3x^2-9x-7=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)
\(B_{max}=-\frac{1}{4}\) khi \(x=-\frac{3}{2}\)
c/ \(C=-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)+5\)
\(C=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)
\(C_{max}=5\) khi \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Nãy lộn nhé,em làm lại:
\(D=\left(x^2+4xy+2x+4y^2+4y+1\right)+x^2+8\)
\(=\left[x^2+2x\left(2y+1\right)+\left(2y+1\right)^2\right]+x^2+8\)
\(=\left(x+2y+1\right)^2+x^2+8\ge8\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\x+2y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}\)
Dạng này mình không quen cho lắm nên không chắc nha!
\(D=\left(x^2+4xy+2x+4y^2+4y+1\right)+8\)
\(=\left[x^2+2x\left(2y+1\right)+\left(2y+1\right)\right]+8\)
\(=\left(x+2y+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi \(\left(x+2y+1\right)^2=0\Leftrightarrow2y+1=-x\)
Mà \(\left(x+2y+1\right)^2=x^2+2x\left(2y+1\right)+\left(2y+1\right)\)
\(=x^2-2x^2-x=-x^2-x=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Thay vào D loại x = -1 suy ra x = 0 tức là y = -1/2
\(A=-2\left(x^2+y^2+1-2xy-2x+2y\right)-2\left(4y^2-4y+1\right)+2017\)
\(A=-2\left(x-y-1\right)^2-2\left(2y-1\right)^2+2017\le2017\)
\(A_{max}=2017\) khi \(\left\{{}\begin{matrix}x=\frac{3}{2}\\y=\frac{1}{2}\end{matrix}\right.\)