Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(A=\frac{1}{x^2-4x+7}\)
\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)
\(A=\frac{1}{\left(x-2\right)^2+3}\)
Lại có :
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)
\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(f\left(x\right)=x^2-4x+7\)
\(f\left(x\right)=\left(x^2-4x+4\right)+3\)
\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)
Vậy đa thức \(f\left(x\right)\) vô nghiệm
Chúc bạn học tốt ~
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5<-21\)<=> \(x\ge8\) hoặc \(x<-13\)
2)
a) |2x-3|>=0 => A>=0-5=-5 => Min A=-5 <=> x=3/2
b) \(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\Rightarrow B\ge2+5=7\)=> MinB=7 <=>x=1
3)
\(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\Leftrightarrow A\le0+7=7\Rightarrow MaxA=7\Leftrightarrow x=-\frac{1}{2}\)
b)
th1: nếu x<-3/2 => B=-2x-3+2x+2=-1
th2: nếu \(-\frac{3}{2}\le x\le-1\)=> B=2x+3+2x+2=4x+5
ta có:\(-\frac{3}{2}\le x\le-1\Rightarrow-6\le4x\le-4\Leftrightarrow-1\le4x+5\le1\Rightarrow-1\le B\le1\)
th3: nếu x>-1 => B=2x+3-2x-2=1=>
Max B=1 <=> x>-1 hoặc \(-\frac{3}{2}\le x\le-1\)
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
TuanMinhAms sai rồi bn
để A lớn nhất \(\Rightarrow\left|x-2013\right|+2\) bé nhất
\(\left|x-2013\right|\ge0\Rightarrow\left|x-2013\right|+2\ge2\)
dấu "=" xảy ra khi \(\left|x-2013\right|=0\Rightarrow x=2013\)
khi đó GTLN của A = \(\frac{2026}{2}=1013\)
p/s: sai mk góp ý ko pk soi bài hay xúc phạm bn nha =]
\(A=\frac{2026}{\left|x-2013\right|}+2\)
Để A nhỏ nhất thì \(\frac{2026}{\left|x-2013\right|}\)nhỏ nhất
\(\Rightarrow\left|x-2013\right|\)nhỏ nhất
Mà \(\left|x-2013\right|\ge0\forall x\)và \(\left|x-2013\right|\ne0\)
\(\Rightarrow\left|x-2013\right|=1\)thì A nhỏ nhất
Khi đó \(A=\frac{2026}{1}+2=2023+2=2028\)
Vậy Amax = 2028 <=> | x - 2013 | = 1 <=> x ∈ { 2014; 2012 }