Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
\(minA=-56\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(B=4x-x^2+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)
\(maxB=5\Leftrightarrow x=2\)
\(A=\left|2x+1\right|+5\)
Ta có: \(\left|2x+1\right|\ge0,\forall x\)
\(\Rightarrow\left|2x+1\right|+5\ge5,\forall x\)
Dấu "\(=\)" xảy ra \(\Leftrightarrow\left|2x+1\right|=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy, Giá trih nhỏ nhất\(minA=5\)\(\Leftrightarrow x=\frac{-1}{2}\)
t.ick và chọn câu trả lời của mình nhé
Chúc bạn học tốt!
A = |2x - 1| + 5
có |2x - 1| ≥ 0 => |2x - 1| + 5 ≥ 5
=> A ≥ 5
xét A = 5 <=> |2x - 1| = 0 <=> x = 1/2
vậy_
B = 3 - |1 - x|
có |1-x| ≥ 0 => -|1 - x| ≤ 0
=> 3 - |1 - x| ≤ 3
=> B ≤ 3
xét B = 3 <=> |1-x| = 0 <=> x = 1
vậy_
Giao Luu Trường phái
Pháp pháp Siêu trừu tượng
\(B=\frac{2\left(2x+1\right)+2}{\left(2x+1\right)^2+3}=\frac{2y+2}{y^2+3}\)
\(B-1\)=\(\frac{2y+2}{y^2+3}-1\)\(=\frac{2y+2-y^2-3}{y^2+3}=-\frac{\left(y^2-2y+1\right)}{y^2+3}=-\frac{\left(y-1\right)^2}{y^2+3}\le0\)
\(\Rightarrow B\ge1\) Khi y=1=> x=0
\(B+\frac{1}{3}=\frac{6y+6+y^2+3}{y^2+3}=\frac{\left(y+3\right)^2}{y^2+3}\ge0\)
\(\Rightarrow B\ge-\frac{1}{3}\) khi y=-3=> x=-2
KL
\(-\frac{1}{3}\le B\le1\)
cho ý kiến
\(A=\frac{x}{x^4+\frac{1}{x^2}}+\frac{\frac{1}{x}}{x^2+\frac{1}{x^4}}=\frac{x}{\frac{x^6+1}{x^2}}+\frac{\frac{1}{x}}{\frac{x^6+1}{x^4}}=\frac{x^3}{x^6+1}+\frac{x^3}{x^6+1}=\frac{2x^3}{x^6+1}\)
Áp dụng bất đẳng thức Côsi: \(x^6+1\ge2\sqrt{x^6.1}=2x^3\)
\(\Rightarrow A\le\frac{2x^3}{2x^3}=1\)
Dấu "=" xảy ra khi \(x^3=1\Leftrightarrow x=1\)
Vậy GTNN của A là 1.
\(B=\frac{-8}{3x^2+1}\)
Cách 1:
\(3x^2+1>0\)không có GTLN \(\Rightarrow\frac{8}{3x^2+1}\)không có GTNN \(\Rightarrow-\frac{8}{3x^2+1}\)không có GTLN.
Cách 2:
\(3Bx^2+B=-8\Leftrightarrow3Bx^2+B+8=0\)
+B = 0 thì pt trở thành 0 + 0 + 8 = 0 (vô lí)
+Xét B khác 0. Để pt có nghiệm x thì \(\Delta'=0-4.3B\left(B+8\right)\ge0\Leftrightarrow B\left(B+8\right)\le0\Leftrightarrow-8\le B\le0\)
\(\Rightarrow-8\le B<0\text{ (do }B\ne0\text{)}\)
=> B không có GTLN.