K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

Ta có:

B = \(\frac{4}{5}-\left|3x-2\right|\le\frac{4}{5}\)
Để B đạt giá trị lớn nhất thì B \(=\frac{4}{5}\)
Hay |3x - 2| = 0
\(\Leftrightarrow3x-2=0\)\(\Leftrightarrow x=\frac{2}{3}\) 
Vậy giá trị lớn nhất của B là \(\frac{4}{5}\)khi x = \(\frac{2}{3}\)

7 tháng 9 2016

min=-1 khi x=2

max=5 khi x=-6

7 tháng 9 2016

cho cách giải luôn đi kê hà my

3 tháng 5 2021

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

3 tháng 5 2021

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4 

7 tháng 9 2016

1) Ta có: \(-1+\left(8-4x\right)^2\ge-1\)

Dấu "=" xảy ra khi và chỉ khi (8 - 4x)2 = 0 => 8 - 4x = 0 => 4x = 8 => x = 2

Vậy GTNN của -1 + (8 - 4x)2 là -1 khi và chỉ khi x = 2

2) Ta có: \(5-\left(2+3x\right)^4\le5\)

Dấu ''='' xảy ra khi và chỉ khi (2 + 3x)4 = 0 => 2 + 3x = 0 => 3x = -2 => x = -2/3

Vậy GTLN của 5 - (2 + 3x)4 là 5 khi và chỉ khi x = -2/3

7 tháng 9 2016

(8-4x)2 >=0 nên -1+(8-4x)2 >=-1 nên GTNN: -1

Tương tự (2+3x)4 >=0 nên GTLN: 5

24 tháng 10 2017

mk ko bt 123

27 tháng 6 2019

Bài 1:

Ta có: \(6.|3x-12|\ge0\forall x\)

\(\Rightarrow23+6.|3x-12|\ge23+0\forall x\)

Hay \(A\ge23\forall x\)

Dấu"=" xảy ra \(\Leftrightarrow3x-12=0\)

                        \(\Leftrightarrow x=4\)

Vậy Min A=23 \(\Leftrightarrow x=4\)

27 tháng 6 2019

Bài 2:

Ta có: \(5.|14-7x|\ge0\forall x\)

\(\Rightarrow-5.|14-7x|\le0\forall x\)

\(\Rightarrow2019-5.|14-7x|\le2019-0\forall x\)

Hay \(B\le2019\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow14-7x=0\)

                        \(\Leftrightarrow x=2\)

Vậy Max B=2019 \(\Leftrightarrow x=2\)

\(D=2-\left|x-1\right|\ge2\)

Max \(D=2\Leftrightarrow x-1=0\)

\(\Rightarrow x=1\)

\(E=-\left|3x-5\right|-4\le-4\)

Max \(E=-4\Leftrightarrow3x-5=0\Rightarrow x=\frac{5}{3}\)

8 tháng 9 2016

\(5-\left(2+3x\right)^4\)

Ta có : \(\left(2+3x\right)^4\le0\)

\(\Rightarrow5-\left(2+3x\right)^4\le5\)

Dấu " = " xảy ra khi và chỉ khi \(\left(2+3x\right)^4=0\)

                                                    \(\left(2+3x\right)=0\)

                                                       \(3x=-2\)

                                                         \(x=-\frac{2}{3}\)

Vậy \(Max\) của \(5-\left(2x+3\right)^4\) là \(5\) xảy ra khi và chỉ khi \(x=-\frac{2}{3}\)

8 tháng 9 2016

GTLN là 5