Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt \(\Leftrightarrow\)\(19k+190=A^2\)\(\Leftrightarrow\)\(k=\frac{A^2-190}{19}\)
Để k nhỏ nhất và \(k\inℕ^∗\) thì \(\frac{A^2-190}{19}=\frac{A^2}{19}-19\) nhỏ nhất và \(A^2>190\)\(\Leftrightarrow\)\(A\ge14\); \(A^2⋮19\)
Mà 19 là số nguyên tố nên để \(\frac{A^2-190}{19}\) nhỏ nhất và \(A^2⋮19\) thì \(A=19\left(tm:A\ge14\right)\)
\(\Rightarrow\)\(k=\frac{A^2-190}{19}=\frac{19^2-190}{19}=9\)
Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)
GTNN của A là 25 khi và chỉ khi x=5
\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)
GTNN của B là -16 khi x=2
b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)
GTLN của C là -5 khi và chỉ khi x=-3
\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)
GTLN của D là 14 khi và chỉ khi x = -1
a, Tìm giá trị nhỏ nhất của biểu thức:
A = \(|x-5|+25\)
Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất
\(\Rightarrow\)\(|x-5|\)nhỏ nhất
Mà \(|x-5|\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\) \(|x-5|\)\(=0\) (1)
Thay (1) vào A, ta có:
A = 0 + 25
A = 25
Vậy giá trị nhỏ nhất của A là 25
\(B=-16+\left(x-2\right)^2\)
Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất
\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất
Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\left(x-2\right)^2\)\(=0\) (2)
Thay (2) vào B, ta có :
B = \(-16+0\)
B = \(-16\)
Vậy giá trị nhỏ nhất của B là -16
a) Ta có: \(-\left|x\right|\le0\)
\(-\left(y+4\right)^4\le0\)
\(\Rightarrow-\left|x\right|-\left(y+4\right)^4\le0\)
\(\Rightarrow A=10-\left|x\right|-\left(y+4\right)^4\le10\)
Vậy \(MAX_A=10\) khi \(x=0;y=-4\)
b) Hình như sai đề thì phải
Bài giải
Câu F mình làm ở câu trước của bạn rồi nên giờ mình trả lời tiếp luôn nha ! Bài tìm GTLN tí nữa mifh làm cho ! Đang bận !
Câu 1 : Tìm GTNN
\(H=\left|2x+5\right|+\left|8-2x\right|\)
Áp dụng tính chất \(\left|A\right|\ge A\)Ta có :
\(\left|2x+5\right|\ge2x+5\text{ Dấu " = " xảy ra khi }2x+5\ge0\text{ }\Rightarrow\text{ }2x\ge-5\text{ }\Rightarrow\text{ }x\ge-\frac{5}{2}\)
\(\left|8-2x\right|\ge8-2x\text{ Dấu " = " xảy ra khi }8-2x\ge0\text{ }\Rightarrow\text{ }2x\le8\text{ }\Rightarrow\text{ }x\le4\)
\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge2x+5+8-2x\)
\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge13\text{ Dấu " = " xảy ra khi }-\frac{5}{2}\le x\le4\)
\(\text{Vậy }Min\text{ }H=13\text{ khi }-\frac{5}{2}\le x\le4\)
Bài 1:
a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=\dfrac{8}{5}\)
=>x+4/15=8/5 hoặc x+4/15=-8/5
=>x=4/3 hoặc x=-28/15
b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{6}:\dfrac{5}{3}=\dfrac{-3}{30}=\dfrac{-1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)
c: \(\Leftrightarrow\left|x-1\right|-1=1\)
=>|x-1|=2
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
Bài 2:
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)
Bài 3:
a: \(A=\left|x+\dfrac{15}{19}\right|-1>=-1\)
Dấu '=' xảy ra khi x=-15/19
b: \(\left|x-\dfrac{4}{7}\right|+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu '=' xảy ra khi x=4/7
Ta có :
\(-\left(2x-6\right)^4\le0\forall x\)
\(\Rightarrow-\left(2x-6\right)^4+9\le9\forall x\)
Dấu \("="\)<=> \(-\left(2x-6\right)^4=0\Leftrightarrow\left(2x-6\right)^4=0\Leftrightarrow2x-6=0\Leftrightarrow2x=6\Leftrightarrow x=3\)
Vậy GTLN của \(A\)là 9 \(\Leftrightarrow x=3\)
Bài 2 :
Điều kiện : n khác -2 ; n thuộc Z
Để G nhỏ nhất
<=> 3 + 10/n + 2 nhỏ nhất
<=> 10/n+2 nhỏ nhất
<=> n + 2 < 0 ; n + 2 thuộc Ư ( 10 ) ; n + 2 lớn nhất
<=> n + 2 = -1
<=> n = -1 - 2
<=> n = -3
Vậy G đạt GTNN <=> n = -3
ính giá trị của các biểu thức sau:
A=827−(349+427)A=827−(349+427)
B=(1029+235)−629B=(1029+235)−629
Giải:
A=827−(349+427)A=827−(349+427)
=587−(319+307)=58−307−319=4−319=587−(319+307)=58−307−319=4−319
= 36−319=5936−319=59
B=(1029+235)−629B=(1029+235)−629
=1029−629+235=4+235=635
ính giá trị của các biểu thức sau:
A
=
8
2
7
−
(
3
4
9
+
4
2
7
)
A=827−(349+427)
B
=
(
10
2
9
+
2
3
5
)
−
6
2
9
B=(1029+235)−629
Giải:
A
=
8
2
7
−
(
3
4
9
+
4
2
7
)
A=827−(349+427)
=
58
7
−
(
31
9
+
30
7
)
=
58
−
30
7
−
31
9
=
4
−
31
9
=587−(319+307)=58−307−319=4−319
=
36
−
31
9
=
5
9
36−319=59
B
=
(
10
2
9
+
2
3
5
)
−
6
2
9
B=(1029+235)−629
=
10
2
9
−
6
2
9
+
2
3
5
=
4
+
2
3
5
=
6
3
5
Xem thêm tại: http://loigiaihay.com/bai-100-trang-47-sgk-toan-6-tap-2-c41a24737.html#ixzz4eUGN0ooE
a/ Vì: \(\left(2x+\dfrac{1}{3}\right)^4\ge0\) với mọi x
=> \(\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
dấu ''='' xảy ra khi :
\(2x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{6}\)
Vậy MinA = -1 <=> \(x=-\dfrac{1}{6}\)
b/ Vì: \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\ge0\Rightarrow-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0\)
=> \(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)
dấu ''='' xảy ra khi :
\(-\dfrac{4}{9}x-\dfrac{2}{15}=0\Leftrightarrow x=-\dfrac{3}{10}\)
vậy MaxB = 3 khi \(x=-\dfrac{3}{10}\)
kb
Với điều kiện a và k như thế nào?