
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


2, TC: \(\frac{5x^2-4x+4}{x^2}=\frac{4x^2+x^2-4x+4}{x^2}\)\(=\frac{4x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=4+\frac{\left(x-2\right)^2}{x^2}\)
Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\forall x\left(x\ne0\right)\)\(\Rightarrow4+\frac{\left(x-2\right)^2}{x^2}\ge4\)
Vậy GTNN của A là 4 tại \(\frac{\left(x-2^2\right)}{x^2}=0\Rightarrow x=2\)

\(4x^2+4x+10=\left(2x+1\right)^2+9\)
Ma \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+9\ge9\)
\(\Rightarrow\frac{3}{4x^2+4x+10}\le\frac{3}{9}=\frac{1}{3}\)
(dau "=" xay ra khi x=\(\frac{-1}{2}\)

Bài làm:
+Tìm Min:
Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)
Mà \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\)\(\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}\ge0\)
Dấu "=" xảy ra khi: \(\left(x+2\right)^2=0\Rightarrow x=-2\)
Vậy \(Min=-1\Leftrightarrow x=-2\)
+Tìm Max:
Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2-4x+1\right)}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\)
Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\)\(\Rightarrow-\frac{\left(2x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow x=\frac{1}{2}\)
Vậy \(Max=4\Leftrightarrow x=\frac{1}{2}\)
1 cách làm khác :3
\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\)
\(\Leftrightarrow Ax^2-4x+\left(A-3\right)=0\)
Xét \(\Delta'=4-\left(A-3\right)A=-A^2+3A+4\ge0\)
\(\Leftrightarrow\left(A-4\right)\left(A+1\right)\ge0\Leftrightarrow-1\le A\le4\)
Điểm rơi khó chết luôn á :(

Ta có :
\(Q=\frac{3-4x}{x^2+1}=\frac{4x^2+4-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)
Dấu ''='' xảy ra <=> 2x + 1 = 0 <=> x = -1/2
Vậy GTLN Q là 4 <=> x = -1/2
Ta có: \(Q=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)
Ta thấy: \(\frac{\left(2x+1\right)^2}{x^2+1}\ge0\Rightarrow4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)với \(\forall x\)
Dấu "=" xảy ra khi 2x+1=0<=>x=-1/2
Vậy MaxQ = 4 khi x=-1/2'
Đánh điện thoại lâu quá:vvvv

ĐKXĐ : \(x\ne0\)
\(C=\frac{9x^2-4x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

\(A=-x^2-4x+1\)
\(=-\left(x^2+4x-1\right)\)
\(=-\left(x^2+4x+4-5\right)\)
\(=-\left[\left(x+2\right)^2-5\right]\)
\(=5-\left(x+2\right)^2\le5\)
Dấu = xảy ra <-> x + 2 = 0
<-> x = -2
Vậy Max A = 5 <-> x = -2
\(B=4-x^2+2x\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left[\left(x-1\right)^2-5\right]\)
\(=5-\left(x-1\right)^2\le5\)
Dấu = xảy ra <=> x - 1 = 0
<=> x = 1
Vậy Max B = 5 <-> x = 1

1. D = 3( x2 - 2x.1/3 + 1/9) -1/3 +1
GTNN D = 5/6
dài quá, nản quá

\(M=19-6x-9x^2\)
\(-M=9x^2+6x-19\)
\(=\left(9x^2+6x+1\right)-20\)
\(=\left(3x+1\right)^2-20\)
\(Do\)\(\left(3x+1\right)^2\ge0\)\(\forall x\)
=>\(\left(3x+1\right)^2-20\ge-20\)\(\forall x\)
=>\(-M\ge-20\)\(\forall x\)
=> \(M\le20\)\(\forall x\)
Dấu = xảy ra khi:
\(\left(3x+1\right)^2=0\)
<=> \(3x+1=0\)
<=> \(3x=-1\)
<=> \(x=\frac{-1}{3}\)
Vậy \(M_{max}\)\(\le20\)\(khi\)\(x=\frac{-1}{3}\)
\(N=1+4x-x^2\)
\(-N=x^2-4x+1\)
\(=\left(x^2-4x+4\right)-3\)
\(=\left(x-2\right)^2-3\)
\(Do\)\(\left(x-2\right)^2\)\(\ge0\)\(\forall x\)
=>\(\left(x-2\right)^2-3\)\(\ge-3\)\(\forall x\)
=>\(-N\ge-3\)\(\forall x\)
=>\(N\le3\)\(\forall x\)
Dấu = xảy ra khi:
\(\left(x+2\right)^2=0\)
<=> \(x+2=0\)
<=>\(x=-2\)
Vậy \(N_{max}\)\(\le3\)\(khi\)\(x=-2\)
Chúc bạn học tốt ~! :)
+) \(M=19-6x-9x^2=-9x^2-6x+19=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)
Vì \(-\left(3x+1\right)^2\le0\Rightarrow M=-\left(3x+1\right)^2+20\le20\)
Dấu "=" xảy ra khi -(3x+1)2=0 <=>x=-1/3
Vậy Mmax=20 khi x=-1/3
+) \(N=1+4x-x^2=-x^2+4x+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\)
tiếp tục giống M

Bước 1: Tìm giá trị nhỏ nhất của \(4x^2-4x+5\)
Sử dụng máy tính VINACAl: bấm SHIFT rồi bấm 6 rồi lại bấm 6
nhập a=4; b=-4; c=5 rồi bấm = hai lần
Kết quả nhận được (Y-Value Minimum=4) là giá trị nhỏ nhất của \(4x^2-4x+5\)
Bước 2; Thay kết quả tìm được ở bước 1( là 4) vào biểu thức ta được \(\frac{3}{4}\)
Vậy giá trị lớn nhất của biểu thức đã cho là \(\frac{3}{4}\)
k đi k lại
Ta có \(4x^2+4x+1\)
\(=\left(2x+1\right)^2\ge0\forall x\)
Vậy GTNN của biểu thức là 0 khi 2x+1=0=>x=-1/2