\(A=x^2-6x+11\)

\(B=x^2-20x+101\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

\(A=3x-x^2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Vậy GTLN của A là \(\frac{9}{4}\)khi x = \(\frac{3}{2}\)

\(B=7-8x-x^2=-\left(x^2+8x+16\right)+23=-\left(x+4\right)^2+23\le23\)

Vậy GTLN của B là 23 khi x = -4

\(C=x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

Vậy GTNN của C là 1 khi x = 10

\(D=3x^2-6x+11=3\left(x^2-2x+1\right)+8=3\left(x-1\right)^2+8\ge8\)

Vậy GTNN của D là 8 khi x = 1

2 tháng 8 2018

\(a,A=3x-x^2=-x^2+3x=-x^2+2.\frac{3}{2}x-\frac{9}{4}+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Vậy Max A = 9/4 <=> x = 3/2

\(b,B=7-8x-x^2=-x^2-8x+7=-x^2-2.4x-16+23=-\left(x+4\right)^2+23\ge23\)

Vậy MinB = 23 <=> x = -4

\(c,C=x^2-20x+101=x^2-2.10x+10^2+1=\left(x-10\right)^2+1\ge1\)

Vậy MinC = 1 <=> x = 10

\(d,D=3x^2-6x+11\)

\(D=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2+8=\left(\sqrt{3}x-\sqrt{3}\right)^2+8\ge8\)

Vậy MinD = 8<=> x=1

a) \(A=x^2-6x+11\)

\(\Rightarrow A=x^2-6x+9+2\)

\(\Rightarrow A=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = 3

Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)

b) \(B=2x^2+10x-1\)

\(\Rightarrow B=2\left(x^2+5\right)-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)

Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)

\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)

Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)

c) \(C=5x-x^2\)

\(\Rightarrow C=-\left(x^2-5x\right)\)

\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)

Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)

Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)

28 tháng 12 2017

\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)

      \(=3+\frac{1}{x^2+2x+3}\)

Lại có: \(x^2+2x+3\)

          \(=\left(x+1\right)^2+2\ge2\)

\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu = xảy ra khi x=-1

P2 tương tự

23 tháng 8 2018

a) ta có : \(A=x^2-20x+101=x^2-20x+100+1\)

\(\left(x-10\right)^2+1\ge1\) \(\Rightarrow A_{min}=1\) khi \(x=10\)

b) ta có : \(B=4x^2+4x+2=4x^2+4x+1+1\)

\(=\left(2x+1\right)^2+1\ge1\) \(\Rightarrow B_{min}=1\) khi \(x=\dfrac{-1}{2}\)

c) ta có : \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}\)

\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\) \(\Rightarrow C_{min}=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}\)

23 tháng 8 2018

\(A=x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

Vậy GTNN của A là 1 khi \(x=10\)

\(B=4x^2+4x+2=\left(4x^2+4x+1\right)+1=\left(2x+1\right)^2+1\ge1\)

Vậy GTNN của B là 1 khi \(x=-\dfrac{1}{2}\)

\(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{18}{4}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{18}{4}\ge-\dfrac{18}{4}\)

Vậy GTNN của C là \(-\dfrac{18}{4}\) khi \(x=\dfrac{3}{2}\)

28 tháng 6 2017

a) \(x^2-6x+11=x^2-2.3.x+3^3+2=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow\) min = \(2\) khi \(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

b) \(x^2-20x+101\Leftrightarrow x^2-2.10.x+10^2+1\Leftrightarrow\left(x-10\right)^2+1\ge1\)

\(\Rightarrow\) min \(=1\) khi \(\left(x-10\right)^2=0\Leftrightarrow x-10=0\Leftrightarrow x=10\)

28 tháng 6 2017

d) \(x^2-2x+y^2+4y+8\) \(\Leftrightarrow\) \(x^2-2x+1^2+y^2+4y+2^2+3\)

\(\Leftrightarrow\) \(\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)

\(\Rightarrow\) min = \(3\) khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

e) \(x^2-4x+y^2-8y+6\) \(\Leftrightarrow\) \(x^2-4x+2^2+y^2-8y+4^2-14\)

\(\Leftrightarrow\) \(\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

vậy min = \(-14\) khi \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x-2=0\\y-4=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

8 tháng 12 2018

a) A = x^2 -6x+11

=x^2 -6x+9+2

=(x^2 -6x+9)+2

=(x-3)^2 +2

do (x-3)^2 ≥ 0 Với mọi x

=> (x-3)^2 +2 ≥ 2

=> A ≥ 2

Min A=2 khi x=3

b) B= -x^2 +6x-11

=-x^2 +6x-9-2

=-(x^2-6x+9)-2

=-(x-3)^2-2

=> Max B =-2

khi x=3

c) C= x^2 -4xy+5y^2 +10x-22y+28

=(x^2 -4xy+4y^2 )+(10x-20y) +25 +(y^2 -2y+1) +2

=(x-2y)^2 +10(x-2y)+25+(y-1)^2+2

=(x-2y+5)^2 +(y-1)^2+2

=> Min C=2 khi y=1 x=-3

9 tháng 12 2018

le khanh duong

(x-3)2+(x+1)2

=x2-6x+9+x2 +2x+1

=2x2-4x+10

=(2x2-4x+2)+8

=2(x2-2x+1)+8

=2(x-1)2+8

=> GTNN =8 khi x=1