Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x-x^2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
Vậy GTLN của A là \(\frac{9}{4}\)khi x = \(\frac{3}{2}\)
\(B=7-8x-x^2=-\left(x^2+8x+16\right)+23=-\left(x+4\right)^2+23\le23\)
Vậy GTLN của B là 23 khi x = -4
\(C=x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)
Vậy GTNN của C là 1 khi x = 10
\(D=3x^2-6x+11=3\left(x^2-2x+1\right)+8=3\left(x-1\right)^2+8\ge8\)
Vậy GTNN của D là 8 khi x = 1
\(a,A=3x-x^2=-x^2+3x=-x^2+2.\frac{3}{2}x-\frac{9}{4}+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
Vậy Max A = 9/4 <=> x = 3/2
\(b,B=7-8x-x^2=-x^2-8x+7=-x^2-2.4x-16+23=-\left(x+4\right)^2+23\ge23\)
Vậy MinB = 23 <=> x = -4
\(c,C=x^2-20x+101=x^2-2.10x+10^2+1=\left(x-10\right)^2+1\ge1\)
Vậy MinC = 1 <=> x = 10
\(d,D=3x^2-6x+11\)
\(D=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2+8=\left(\sqrt{3}x-\sqrt{3}\right)^2+8\ge8\)
Vậy MinD = 8<=> x=1
a) \(A=x^2-6x+11\)
\(\Rightarrow A=x^2-6x+9+2\)
\(\Rightarrow A=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = 3
Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)
b) \(B=2x^2+10x-1\)
\(\Rightarrow B=2\left(x^2+5\right)-1\)
\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)
\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)
Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)
\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)
Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)
c) \(C=5x-x^2\)
\(\Rightarrow C=-\left(x^2-5x\right)\)
\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)
Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)
Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)
\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)
\(=3+\frac{1}{x^2+2x+3}\)
Lại có: \(x^2+2x+3\)
\(=\left(x+1\right)^2+2\ge2\)
\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)
Dấu = xảy ra khi x=-1
P2 tương tự
a) ta có : \(A=x^2-20x+101=x^2-20x+100+1\)
\(\left(x-10\right)^2+1\ge1\) \(\Rightarrow A_{min}=1\) khi \(x=10\)
b) ta có : \(B=4x^2+4x+2=4x^2+4x+1+1\)
\(=\left(2x+1\right)^2+1\ge1\) \(\Rightarrow B_{min}=1\) khi \(x=\dfrac{-1}{2}\)
c) ta có : \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}\)
\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\) \(\Rightarrow C_{min}=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}\)
\(A=x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi \(x=10\)
\(B=4x^2+4x+2=\left(4x^2+4x+1\right)+1=\left(2x+1\right)^2+1\ge1\)
Vậy GTNN của B là 1 khi \(x=-\dfrac{1}{2}\)
\(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{18}{4}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{18}{4}\ge-\dfrac{18}{4}\)
Vậy GTNN của C là \(-\dfrac{18}{4}\) khi \(x=\dfrac{3}{2}\)
a) \(x^2-6x+11=x^2-2.3.x+3^3+2=\left(x-3\right)^2+2\ge2\)
\(\Rightarrow\) min = \(2\) khi \(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
b) \(x^2-20x+101\Leftrightarrow x^2-2.10.x+10^2+1\Leftrightarrow\left(x-10\right)^2+1\ge1\)
\(\Rightarrow\) min \(=1\) khi \(\left(x-10\right)^2=0\Leftrightarrow x-10=0\Leftrightarrow x=10\)
d) \(x^2-2x+y^2+4y+8\) \(\Leftrightarrow\) \(x^2-2x+1^2+y^2+4y+2^2+3\)
\(\Leftrightarrow\) \(\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)
\(\Rightarrow\) min = \(3\) khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
e) \(x^2-4x+y^2-8y+6\) \(\Leftrightarrow\) \(x^2-4x+2^2+y^2-8y+4^2-14\)
\(\Leftrightarrow\) \(\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
vậy min = \(-14\) khi \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x-2=0\\y-4=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
a) A = x^2 -6x+11
=x^2 -6x+9+2
=(x^2 -6x+9)+2
=(x-3)^2 +2
do (x-3)^2 ≥ 0 Với mọi x
=> (x-3)^2 +2 ≥ 2
=> A ≥ 2
Min A=2 khi x=3
b) B= -x^2 +6x-11
=-x^2 +6x-9-2
=-(x^2-6x+9)-2
=-(x-3)^2-2
=> Max B =-2
khi x=3
c) C= x^2 -4xy+5y^2 +10x-22y+28
=(x^2 -4xy+4y^2 )+(10x-20y) +25 +(y^2 -2y+1) +2
=(x-2y)^2 +10(x-2y)+25+(y-1)^2+2
=(x-2y+5)^2 +(y-1)^2+2
=> Min C=2 khi y=1 x=-3
le khanh duong
(x-3)2+(x+1)2
=x2-6x+9+x2 +2x+1
=2x2-4x+10
=(2x2-4x+2)+8
=2(x2-2x+1)+8
=2(x-1)2+8
=> GTNN =8 khi x=1