Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=-x^2-4x-4+2=-\left(x+2\right)^2+2\le2\)
\(A_{max}=2\) khi \(x=-2\)
\(B=-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
\(B_{max}=\frac{49}{8}\) khi \(x=-\frac{3}{4}\)
\(C=-x^2-2x+8=-\left(x+1\right)^2+9\le9\)
\(C_{max}=9\) khi \(x=-1\)
\(D=-4x^2+4xy-y^2-4x^2+3=-\left(2x-y\right)^2-4x^2+3\le3\)
\(D_{max}=3\) khi \(\left\{{}\begin{matrix}4x^2=0\\2x-y=0\end{matrix}\right.\) \(\Rightarrow x=y=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1.
a) A = -x2 - 4x - 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2
\(-\left(x+2\right)^2\le0\forall x\Rightarrow-\left(x+2\right)^2+2\le2\)
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxA = 2 <=> x = -2
b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Đẳng thức xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MaxB = 49/8 <=> x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\forall x\Rightarrow-\left(x+1\right)^2+9\le9\)
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MaxC = 9 <=> x = -1
d) D = -8x2 + 4xy - y2 + 3 = -( 4x2 - 4xy + y2 ) - 4x2 + 3 = -( 2x - y )2 - 4x2 + 3
\(\hept{\begin{cases}-\left(2x-y\right)^2\le0\forall x,y\\-4x^2\le0\forall x\end{cases}}\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-y=0\\4x=0\end{cases}}\Rightarrow x=y=0\)
=> MaxD = 3 <=> x = y = 0
Bài 2.
a) A = x2 - 2x + 5 = ( x2 - 2x + 1 ) + 4 = ( x - 1 )2 + 4
\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+4\ge4\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinA = 4 <=> x = 1
b) B = x2 - x + 1 = ( x2 - 2.1/2.x + 1/4 ) + 3/4 = ( x - 1/2 )2 + 3/4
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MinB = 3/4 <=> x = 1/2
c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
C = [( x - 1 )( x + 6 )][( x + 2 )( x + 3)]
C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
C = [ ( x2 + 5x ) - 6 ][ ( x2 + 5x ) + 6 ]
C = ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Đẳng thức xảy ra <=> \(x^2+5x=0\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
=> MinC = -36 <=> x = 0 hoặc x = -5
d) D = x2 + 5y2 - 2xy + 4y + 3
D = ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
D = ( x - y )2 + ( 2y + 1 )2 + 2
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\\left(2y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
=> MinD = 2 <=> x = y = -1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đặt \(A=x^2-2x+1\)
Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A_{min}=0\)
Dấu "=" xảy ra khi: \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)
b) Ta có: \(M=x^2-3x+10\)
\(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)
\(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)
\(\Rightarrow\)\(M_{min}=\frac{31}{4}\)
Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : A = (2 - x)(x + 4)
= 2x - x2 + 8 - 4x
= -x2 - 6x + 8
= -(x2 + 6x) + 8
= -(x2 + 6x + 9 - 9) + 8
= -(x2 + 6x + 9) + 9 + 8
A = -(x + 3)2 + 17
Vì - (x + 3)2 \(\le0\forall x\)
Nên : A = -(x + 3)2 + 17 \(\le17\forall x\)
Vậy Amax = 17 khi x = -3
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm GTNN
a/ \(A=4x^2+7x+13=\left(4x^2+7x+\frac{49}{16}\right)+\frac{159}{16}=\left(2x+\frac{7}{4}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)
b/ \(B=5-8x+x^2=\left(x^2-8x+16\right)-11=\left(x-4\right)^2-11\ge-11\)
c/ \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
![](https://rs.olm.vn/images/avt/0.png?1311)
C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2
C2. ( x + 2 )2 = ( 2x - 1 )2
<=> ( x + 2 )2 - ( 2x - 1 )2 = 0
<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0
<=> [ 3x + 1 ][ 3 - x ] = 0
<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)
b) ( x + 2 )2 - x + 4 = 0
<=> x2 + 4x + 4 - x + 4 = 0
<=> x2 - 3x + 8 = 0
Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x
=> Phương trình vô nghiệm
C3. a) A = x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = 1 , đạt được khi x = 2
b)B = x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy BMin = 3/4, đạt được khi x = 1/2
c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]
C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
C = ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Dấu " = " xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x + 5 = 0
<=> x = 0 hoặc x = -5
Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5
d) D = x2 + 5y2 - 2xy + 4y + 3
= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
= ( x - y )2 + ( 2y + 1 )2 + 2
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)
=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
Vậy DMin = 2 , đạt được khi x = y = -1/2
C4. a) ( Cái này tìm được Min k tìm được Max )
A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = -6 , đạt được khi x = 2
b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
Vậy BMax = 49/8 , đạt được khi x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy CMax = 9 , đạt được khi x = -1
d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )
C5. a) A = 25x2 - 20x + 7
A = 25x2 - 20x + 4 + 3
A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )
b) B = 9x2 - 6xy + 2y2 + 1
B = ( 9x2 - 6xy + y2 ) + y2 + 1
B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )
c) C = x2 - 2x + y2 + 4y + 6
C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1
C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )
d) D = x2 - 2x + 2
D = x2 - 2x + 1 + 1
D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) A = -x2 - 4x - 2 = -x2 - 4x - 4 + 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2
\(-\left(x+2\right)^2\le0\forall x\Rightarrow-\left(x+2\right)^2+2\le2\)
Dấu " = " xảy ra <=> x + 2 = 0 => x = -2
Vậy AMax = 2 , đạt được khi x = -2
b) -2x2 - 3x + 5 = -2( x2 + 1/5x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
Vậy BMax = 49/8 , đạt được khi x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -x2 - 2x - 1 + 9 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\forall x\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy CMax = 9, đạt được khi x = -1
d) D = 5 - 8x - x2 = -x2 - 8x - 16 + 21 = -( x2 + 8x + 16 ) + 21 = -( x + 4 )2 + 21
\(-\left(x+4\right)^2\le0\forall x\Rightarrow-\left(x+4\right)^2+21\le21\)
Dấu " = " xảy ra <=> x + 4 = 0 => x = -4
Vậy DMax = 21 , đạt được khi x = -4
e) E = -3x( x + 3 ) - 7 = -3x2 - 9x - 7 = -3( x2 + 3x + 9/4 ) - 1/4 = -3( x + 3/2 )2 - 1/4
\(-3\left(x+\frac{3}{2}\right)^2\le0\forall x\Rightarrow-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)
Dấu " = " xảy ra <=> x + 3/2 = 0 => x = -3/2
Vậy EMax = -1/4 , đạt được khi x = -3/2
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(A=x^4-2x^3+2x^2-2x+3\)
\(=\left(x^4+2x^2+1\right)-\left(2x^3+2x\right)+2\)
\(=\left(x^2+1\right)^2-2x\left(x^2+1\right)+2\)
\(=\left(x^2+1\right)\left(x^2-2x+1\right)+2\)
\(=\left(x^2+1\right)\left(x-1\right)^2+2\)
Vì \(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x^2+1\ge1\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}\left(x^2+1\right)\left(x-1\right)^2\ge0}\)
\(\Rightarrow A=\left(x^2+1\right)\left(x-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi x = 1
Vậy Amin = 2 khi x = 1
b, \(B=4x^2-2\left|2x-1\right|-4x+5=\left(4x^2-4x+1\right)-2\left|2x-1\right|+4=\left(2x-1\right)^2-2\left|2x-1\right|+4\)
đề sai ko
c, \(C=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow C=-\left(x-1\right)^2+5\le5\)
Dấu "=" xảy ra khi x=1
Vậy Cmin = 5 khi x = 1
2/
+) \(D=-x^2-y^2+x+y+3=-\left(x^2-x+\frac{1}{4}\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{7}{2}=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\)
Vì \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\left(y-\frac{1}{2}\right)^2\le0\end{cases}\Rightarrow-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le0}\Rightarrow D=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\le\frac{7}{2}\)
Dấu "=" xảy ra khi x=y=1/2
Vậy Dmax=7/2 khi x=y=1/2
+) Đề sai
+)bài này là tìm min
\(G=x^2-3x+5=\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu "=" xảy ra khi x=3/2
Vậy Gmin=11/4 khi x=3//2
a, \(A=-2x^2-3x+5=-2\left(x^2+\frac{3}{2}x\right)+5\)
\(=-2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+5\)
\(=-2\left(x+\frac{3}{4}\right)^2+\frac{9}{8}+5=-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Dấu ''='' xảy ra khi x = -3/4
Vậy GTLN A bằng 49/8 khi x = -3/4
b, \(B=\left(2-x\right)\left(x+4\right)=2x+8-x^2-4x=-x^2-2x+8\)
\(=-\left(x^2+2x+1-1\right)+8=-\left(x+1\right)^2+9\le9\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN B bằng 9 tại x = -1
c, \(C=-8x^2+4xy-y^2+3=-4x^2+4xy-y^2-4x^2+3\)
\(=-\left(2x-y\right)^2-4x^2+3\le3\)
Dấu ''='' xảy ra khi x = y = 0
Vậy GTLN C bằng 3 tại x = y = 0
\(a,A=-2\left(x^2+\frac{3}{2}x-\frac{5}{2}\right)=-2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}-5\right)=-2\left(x+\frac{3}{4}\right)^2+\frac{89}{8}\)
\(\left(x+\frac{3}{4}\right)^2\ge0\forall x\in R\Rightarrow-2\left(x+\frac{3}{4}\right)^2\le0\forall x\in R\Leftrightarrow A\le\frac{89}{8}\)
Dấu "=" xảy ra <=> \(x=-\frac{3}{4}\)
Vậy GTLN của A là \(\frac{89}{8}\Leftrightarrow x=-\frac{3}{4}\)
\(b,B=\left(2-x\right)\left(x+4\right)=2x+8-x^2-4x=-\left(x^2+2x-8\right)=-\left(x^2+2x+1-9\right)\)
\(B=-\left(x+1\right)^2+9\)
Có \(\left(x+1\right)^2\ge0\forall x\in R\Rightarrow-\left(x+1\right)^2\le0\forall x\in R\Leftrightarrow B\le9\)
Dấu "=" xảy ra \(\Leftrightarrow x=-1\)
Vậy GTLN của B là \(9\Leftrightarrow x=-1\)
\(c,C=-4x^2+4xy-y^2-4x^2+3=-\left(2x-y\right)^2-4x^2+3\)
Có \(x^2\ge0,\left(2x-y\right)^2\ge0\forall x,y\in R\)
\(\Rightarrow-4x^2-\left(2x-y\right)^2\le0\forall x,y\in R\Leftrightarrow C\le3\)
Dấu "=" xảy ra \(\Leftrightarrow2x=y=0\Leftrightarrow x=y=0\)
Vậy GTLN của C là \(3\Leftrightarrow x=y=0\)