Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta thấy \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
\(\Rightarrow A\ge17,5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
...
\(B=\left|x-2\right|+\left|x-6\right|+2017\)
\(=\left|x-2\right|+\left|6-x\right|+2017\)
Ta thấy \(\left|x-2\right|+\left|6-x\right|\ge\left|x-2+6-x\right|=4\)
\(\Rightarrow B\ge4+2017=2021\)
Dấu "=" xảy ra khi \(2\le x\le6\)
....
\(C=\left(2x+1\right)^{2020}-2019\)
Ta thấy \(\left(2x+1\right)^{2020}\ge0\)
\(\Rightarrow C=\left(2x+1\right)^{2020}-2019\ge-2019\)
Dấu "=" xảy ra khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
....
a.
+) Với x lớn hơn hoặc bằng 0
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x+3+2x\)
\(=\left(2020+3\right)-\left(2x-2x\right)=2023\)
Vậy A có một giá trị duy nhất là 2023 với mọi x lớn hơn hoặc bằng 0
+) Với x < - 1
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x-\left(3+2x\right)\)
\(=2020-2x-3-2x=2017-4x\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow4x=0\Leftrightarrow x=0\left(ktm\right)\)
+) Với x = - 1
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2\left(-1\right)+\left|3+2\left(-1\right)\right|\)
\(=2020+2+1=2023\left(tm\right)\)
Vậy A nhỏ nhất và có một giá trị duy nhất là 2023 \(\Leftrightarrow x\ge-1\)
làm nốt câu này rồi đi ngủ
\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)
Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN
Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)
Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được :
\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)
Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)
Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)
Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)
A = ( x - 2 )2 + 2019
( x- 2 )2 \(\ge0\forall x\)
=> ( x - 2)2 + 2019 \(\ge2019\)
=> A \(\ge2019\)
Dấu " = " xảy ra <=> ( x - 2)2 =0
<=> x = 2
b) Bạn xem lại đề nha !Nếu đề không sai thì nhắn lại với mình
c) C = -( 3 -x)100 - 3. ( y + 2 )200 + 2020
( 3-x )100 \(\ge0\forall x\)
=> - ( 3-x)100 \(\le0\forall x\)
Tương tự : - 3.( y+2)100 \(\le0\forall y\)
=> C \(\le2020\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(3-x\right)^{100}=0\\\left(y+2\right)^{100}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
@Shadow@ Đề câu b) đúng rồi đó
\(B=\left(x-3\right)^2+\left(y-2\right)^2-2018\)
ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\inℤ\\\left(y-2\right)^2\ge0\forall y\inℤ\end{cases}}\)
=> \(\left(x-3\right)^2+\left(y-2\right)^2-2018\le2018\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
A = -|x + 2000|
Ta có: -|x + 2000| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2000 = 0 <=> x = -2000
Vậy Max A = 0 tại x = -2000
B = 2020 - |x + 2019|
Ta có: |x + 2019| \(\ge\)0 \(\forall\)x
=> 2020 - |x + 2019| \(\le\)2020 \(\forall\)x
Dấu "=" xảy ra <=> x + 2019 = 0 <=> x = -2019
Vậy MaxB = 2020 <=> x = -2019
Phần C và D nữa bạn ơi