
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



1) Ta có: \(-1+\left(8-4x\right)^2\ge-1\)
Dấu "=" xảy ra khi và chỉ khi (8 - 4x)2 = 0 => 8 - 4x = 0 => 4x = 8 => x = 2
Vậy GTNN của -1 + (8 - 4x)2 là -1 khi và chỉ khi x = 2
2) Ta có: \(5-\left(2+3x\right)^4\le5\)
Dấu ''='' xảy ra khi và chỉ khi (2 + 3x)4 = 0 => 2 + 3x = 0 => 3x = -2 => x = -2/3
Vậy GTLN của 5 - (2 + 3x)4 là 5 khi và chỉ khi x = -2/3
(8-4x)2 >=0 nên -1+(8-4x)2 >=-1 nên GTNN: -1
Tương tự (2+3x)4 >=0 nên GTLN: 5

\(y=4x-x^2+1\)
\(y=-x^2+4x+1\)
\(y=-\left(x^2-4x-1\right)\)
\(y=-\left(x^2-4x+4-5\right)\)
\(y=-\left(x-2\right)^2+5\)
VÌ -(x-2)2 =< ( bé hơn hoặc bằng) 0
5>0
Suy ra -(x-2)2+5 bé hơn hoặc bằng 5. Vậy GTLN của y là 5 khi x=2


a) Đặt \(A=x^2-2x+5\)
\(=\left(x-1\right)^2+4\)
Ta thấy \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge0+4\forall x\)
hay \(A\ge4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy Min A=4 \(\Leftrightarrow x=1\)
a , \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
Dấu " = " xảy ra khi x - 1 = 0 hay x = 1
Vậy GTNN là 4 khi x = 1 .
b , \(9-4x-x^2=-\left(x^2+4x-9\right)=-\left(x^2+4x+4-13\right)=-\left(x+2\right)^2+13=13-\left(x+2\right)^2\le13\)
Dấu " = " xảy ra khi x + 2 = 0 hay x = -2 .
Vậy GTLN là 13 khi x = -2 .
c , mik ko bt làm

\(A=3\left(x-3\right)^2+\left(y-1\right)^2+2005\)
Nhận xét: \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow3\left(x-3\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow3\left(x-3\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow3\left(x-3\right)^2+\left(y-1\right)^2+2005\ge2005\forall x,y\)
Vậy \(minA=2005\)khi \(3\left(x-3\right)^2=0\)\(\Rightarrow x-3=0\)\(\Rightarrow x=3\)
\(\left(y-1\right)^2=0\)\(\Rightarrow y-1=0\)\(\Rightarrow y=1\)
KL: Vậy \(minA=2005\) khi \(x=3;y=1\)
\(B=\left(x^2-9\right)^2+|y-2|-1\)
Nhận xét: \(\left(x^2-9\right)^2\ge0\forall x\)
\(|y-2|\ge0\forall y\)
\(\Rightarrow\left(x^2-9\right)^2+|y-2|\ge0\forall x,y\)
\(\Rightarrow\left(x^2-9\right)^2+|y-2|-1\ge-1\forall x,y\)
Vậy \(minB=-1\)khi \(\left(x^2-9\right)^2=0\)\(\Rightarrow x^2-9=0\)\(\Rightarrow x^2=9\)\(\Rightarrow x=3\)
\(|y-2|=0\)\(\Rightarrow y=2\)
KL: Vậy \(minB=-1\) khi \(x=3;y=2\)
\(C=x^2-2x+5\)
\(\Rightarrow C=x^2-2x+1+4\)
\(\Rightarrow C=\left(x-1\right)^2+4\)
Nhận xét: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\forall x\)
Vậy \(minB=4\) khi \(\left(x-1\right)^2=0\)\(\Rightarrow x-1=0\)\(\Rightarrow x=1\)
KL: Vậy \(minB=4\) khi \(x=1\)

Bài 1:
a) \(A=\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)
\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy \(A_{min}=-1\Leftrightarrow x=2\)
b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)
Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)
\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)
Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)
Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)
Ta có: \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)
\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)
\(\Rightarrow\) C không có giá trị lớn nhất
Vậy C không có giá trị lớn nhất
d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)
Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)
\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)
Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)
B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)
\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2
b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)
\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
B2:
a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)
\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2
b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)
\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)
\(\frac{4x^2+9}{x^2+1}\)
\(=\frac{4\left(x^2+1\right)+5}{x^2+1}\)
\(=\frac{4\left(x^2+1\right)}{x^2+1}+\frac{5}{x^2+1}\)
để \(\frac{4x^2+9}{x^2+1}\) lớn nhất thì \(\frac{5}{x^2+1}\) phải lớn nhất => x2+1 phải nhỏ nhất =>\(x=\pm1\)
=>\(\frac{4x^2+9}{x^2+1}=\frac{13}{2}\)(6,5)