Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x2 - 6x + 13 = x2 - 2.x.3 + 33 +4 = (x-3)2 + 4 >= 4 suy ra minA=4
mấy câu kia giải tương tự
\(F=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\)
\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)
Đặt \(x^2-7x=a\)
\(F=\left(a-10\right)\left(a+10\right)=a^2-100\ge-100\)
\(\Rightarrow F_{min}=-100\Leftrightarrow x^2-7x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=7\end{cases}}\)
\(E=4-4x^2+6x\)
\(=-\left(4x^2-6x-4\right)\)
\(=-\left(\left(2x\right)^2-2.2x.3+9-13\right)\)
\(=-\left(\left(2x-3\right)^2-13\right)\)
\(=13-\left(2x-3\right)^2\le13\)
Max E bằng 13 khi chỉ khi x bằng 3/2
Ta có : \(A=1-x^2+x\)
\(\Rightarrow A=-\left(x^2-x-1\right)\)
\(\Rightarrow A=-\left(x^2-x+\frac{1}{4}-\frac{5}{4}\right)\)
\(\Rightarrow A=-\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}\)
\(\Rightarrow A=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
Nên : \(A=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\forall x\)
Vậy Amax = \(\frac{5}{4}\) khi \(x=\frac{1}{2}\)
Ta có : \(B=5x-x^2\)
\(=-\left(x^2-5x\right)\)
\(=-\left(x^2-5x+\frac{25}{4}-\frac{25}{4}\right)\)
\(=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}\)
B\(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì \(-\left(x-\frac{5}{2}\right)^2\) \(\text{≤ }0∀x \)
Nên : B \(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\) \(\text{≤ }\frac{25}{4}∀x\)
Vậy \(B_{min}=\frac{25}{4}\) khi \(x=\frac{5}{2}\)
1a) ta có \(A=3\left(x^2-x+\frac{5}{3}\right)=3\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{17}{12}\right)\)
\(=3\left(x-\frac{1}{2}\right)^2+\frac{17}{4}\)
đến đây thì tự đánh giá nhé
các câu kia tương tự nhé, riêng câu 1b thì tách ra và rút gọn rồi làm tương tự
a, \(A=4-2x^2\le4\)
Dấu ''='' xảy ra khi x = 0
Vậy GTLN A là 4 khi x = 0
b, \(B=-x^2+10x-5=-\left(x^2-10x+5\right)=-\left(x^2-10x+25-20\right)\)
\(=-\left(x-5\right)^2+20\le20\)Dấu ''='' xảy ra khi x = 5
Vậy GTLN B là 20 khi x = 5
c, \(C=-3x^2+3x-5=-3\left(x^2-x+\frac{5}{3}\right)\)
\(=-3\left(x^2-x+\frac{1}{4}+\frac{17}{12}\right)=-3\left(x-\frac{1}{2}\right)^2-\frac{51}{12}\le-\frac{51}{21}=-\frac{17}{7}\)
Vậy GTLN C là -17/7 khi x = 1/2
d, tương tự
\(3x^2+6x+1=3\left(x^2+2x+\frac{1}{3}\right)=3\left(x^2+2x.1+1^2-1^2+\frac{1}{3}\right)=3\left[\left(x+1\right)^2-\frac{2}{3}\right]=\)
\(=3\left(x+1\right)^2-2\)
Vậy giá trị lớn nhất là -2 tại x = -1
Câu B tương tự
2. Ta có: A = x2 - 6x + 5 = (x2 - 6x + 9) - 4 = (x - 3)2 - 4
Ta luôn có: (x - 3)2 \(\ge\)0 \(\forall\)x
=> (x - 3)2 - 4 \(\ge\)-4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy MinA = -4 tại x = 3
Ta có: B = 4x2 - 8x + 7 = 4(x2 - 2x + 1) + 3 = 4(x - 1)2 + 3
Ta luôn có: 4(x - 1)2 \(\ge\)0 \(\forall\)x
=> 4(x - 1)2 + 3 \(\ge\)3 \(\forall\)x
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
vậy MinB = 3 tại x = 1
Ta có: C = 2x2 + 4x - 6 = 2(x2 + 2x + 1) - 8 = 2(x + 1)2 - 8
Ta luôn có: 2(x + 1)2 \(\ge\)0 \(\forall\)x
=> 2(x + 1)2 - 8 \(\ge\)-8 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MinC = -8 tại x = -1
1/
\(A=x^2-6x+5\)
\(A=x^2-2\cdot3x+3^2-3^2+5\)
\(A=\left(x-3\right)^2-3^2+5\)
\(A=\left(x-3\right)^2-9+5\)
\(A=\left(x-3\right)^2-4\)
mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-4\ge-4\)
\(\Rightarrow GTNNA\left(x^2-6x+5\right)=-4\)
với \(\left(x-3\right)^2=0;x=3\)
\(B=4x^2-8x+7\)
\(B=4\left(x^2-2x+\frac{7}{4}\right)\)
\(B=4\left(x^2-2\cdot1x+1-1+\frac{7}{4}\right)\)
\(B=4\left(x-1\right)^2+3\)
\(\left(x-1\right)^2\ge0\Rightarrow4\left(x^2-1\right)^2+3\ge3\)
\(\Rightarrow GTNNB=3\)
với \(\left(x-1\right)^2=0;x=1\)
\(C=2x^2+4x-6\)
\(C=2\left(x^2+2x-3\right)\)
\(C=2\left(x^2+2\cdot1x+1-1-3\right)\)
\(C=\left(x+1\right)^2-8\)
có\(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2-8\ge-8\)
\(\Rightarrow GTNNC=-8\)
với \(\left(x+1\right)^2=0;x=-1\)
ta có:A=(3.x^2 -6x+17)/(x^2-2x+5)
<=>A=[3.(x^2-2x +5) +2]/(x^2-2x+5)
<=>A=3 + [2/(x^2-2x +1)+4]
<=>A=3 + [2/(x-1)^2 +4]
mà (x-1)^2 .=0 =>(x-1)^2 +4 >=4 =>2/(x-1)^2 +4<=2/4=1/2 => 3 + 2/(x-1)^2 +4 <=3+1/2=7/2
dấu '=' xảy ra khi x-1=0 <=>x=1
Vậy GTLN của A là 7/2 khi x=1