\(\sqrt{8+\sqrt{x-3}}+\sqrt{5-\sqrt{x-3}}=5\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(t=\sqrt{x-3}\)\(\left(t\ge0\right)\)

\(\sqrt{8+t}+\sqrt{5-t}=5\)

\(\Leftrightarrow\left(\sqrt{8+t}+\sqrt{5-t}\right)^2=25\)

\(\Leftrightarrow8+t+5-t+2\sqrt{\left(8+t\right)\left(5-t\right)}=25\)

\(\Leftrightarrow2\sqrt{\left(8+t\right)\left(5-t\right)}=12\)

\(\Leftrightarrow\sqrt{\left(8+t\right)\left(5-t\right)}=6\)

\(\Leftrightarrow\left(8+t\right)\left(5-t\right)=36\)

\(\Leftrightarrow t^2+3t-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=-4\left(l\right)\end{cases}}\)

thay t=1 = căn (x-3) => x=4

16 tháng 10 2019

điều kiện x-3 \(\ge0;5-\sqrt{x-3}\ge0\)(1)

đặt \(\sqrt{8+\sqrt{x-3}}=a\left(a\ge\sqrt{8}\right);\sqrt{5-\sqrt{x-3}}=b\left(b\ge0\right)\)

\(\hept{\begin{cases}a+b=5\\a^2+b^2=13\end{cases}< =>\hept{\begin{cases}a=5-b\\\left(5-b\right)^2+b^2=13\end{cases}< =>}}\)\(\hept{\begin{cases}a=5-b\\2b^2-10b+12=0\end{cases}< =>\hept{\begin{cases}a=3\\b=2\end{cases};\hept{\begin{cases}a=2\\b=3\end{cases}}}}\)

chỉ có a=3 là thoảm= mãn a \(\ge\sqrt{8}\)

\(\hept{\begin{cases}a=3\\b=2\end{cases}< =>\hept{\begin{cases}8+\sqrt{x-3}=9\\5-\sqrt{x-3}=4\end{cases}< =>x=4}}\)(thỏa mãn (1))

vậy x=4

2 tháng 7 2017

\(\sqrt{x}+\sqrt{y}=3\sqrt{222}\)

\(3\sqrt{222}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{222}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in Z\)

\(\Rightarrow\)  \(a+b=3\)

Xét 4 TH:

-   Nếu a = 0 thì b = 3

-   Nếu a = 1 thì b = 2

-   Nếu a = 2 thì b = 1

-   Nếu a = 3 thì b = 0

Từ đó dễ dàng tìm được x, y

2 tháng 7 2017

:)) Giải thích kiểu này .
bài 2đ
BGK chỉ chấm 1 đ  thôi!!!^^
:)) Mình đã từng làm như vậy cô giáo cho mình  như vậy.

NM
2 tháng 9 2021

để \(y=\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}=1\)

thì \(\left(\sqrt{3}-\sqrt{5}\right)x=1-\sqrt{5}-\sqrt{3}\)

\(\Leftrightarrow x=\frac{1-\sqrt{3}-\sqrt{5}}{\sqrt{3}-\sqrt{5}}\)

b.\(f^2\left(x\right)=\left[\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}\right]^2=8+2\sqrt{15}=\left(\sqrt{5}+\sqrt{3}\right)^2\)

\(\Leftrightarrow\left[\left(\sqrt{3}-\sqrt{5}\right)x+2\sqrt{5}+2\sqrt{3}\right]\left(\sqrt{3}-\sqrt{5}\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2\left(\sqrt{3}+\sqrt{5}\right)x}{\left(\sqrt{3}-\sqrt{5}\right)x}\end{cases}}\)

a)ĐKXĐ :\(x\ge0;x\ne9\)

khai triển => \(P=\frac{x-4}{\sqrt{x}+1}\)

b) Ta có :\(x=\sqrt{14-6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
 

Thay vào P ta có : \(P=\frac{3-\sqrt{5}-4}{\sqrt{3-\sqrt{5}}+1}=-\frac{7+\sqrt{5}}{\sqrt{3-\sqrt{5}}+1}\)

12 tháng 9 2017

ĐKXĐ : x;y > 0

\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)

\(\Leftrightarrow x+\sqrt{xy}=3\sqrt{xy}+15y\)

\(\Leftrightarrow x=2\sqrt{xy}+15y\)

\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)-16y=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)

Mà theo đk x;y > 0 nên \(\sqrt{x}+3\sqrt{y}>0\) Do đó \(\sqrt{x}-5\sqrt{y}=0\Rightarrow\sqrt{x}=5\sqrt{y}\Rightarrow x=25y\)

Thay vào C ta được :

\(C=\frac{2.25y+\sqrt{25y.y}+3y}{25y+\sqrt{25y.y}-y}=\frac{50y+5y+3y}{25y+5y-y}=2\)