\(\frac{x^2-2x+2014}{x^2}\), x khác 0 đạt GTNN

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

\(D=\frac{x^2-2x+2014}{x^2}\)

\(D=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2014}{x^2}\)

\(D=1-\frac{2}{x}+\frac{2014}{x^2}\)

\(D=2014\cdot\frac{1}{x^2}-2\cdot\frac{1}{x}+1\)

Đặt \(\frac{1}{x}=a\)

\(D=2014a^2-2a+1\)

\(D=2014\left(a^2-a\cdot\frac{1}{1007}+\frac{1}{2014}\right)\)

\(D=2014\left(a^2-2\cdot a\cdot\frac{1}{2014}+\frac{1}{2014^2}+\frac{2013}{2014^2}\right)\)

\(D=2014\left[\left(a-\frac{1}{2014}\right)^2+\frac{2013}{2014^2}\right]\)

\(D=2014\left(a-\frac{1}{2014}\right)^2+\frac{2013}{2014}\ge\frac{2013}{2014}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{2014}\Leftrightarrow\frac{1}{x}=\frac{1}{2014}\Leftrightarrow x=2014\)

Vậy....

16 tháng 11 2016

\(\frac{x^2+x+1}{x^2+2x+1}=1-\frac{x}{\left(x+1\right)^2}\)

\(=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}=\left[\frac{1}{4}-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\right]+\frac{3}{4}\)

\(=\left(\frac{1}{2}-\frac{1}{x+1}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow P\ge\frac{3}{4}\)

Vậy \(Max_P=\frac{3}{4}\Leftrightarrow x=1\)

31 tháng 3 2019

\(D=\frac{x^{2}-2x+2018}{x^{2}}\)

\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)

\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)

Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN

Mà \((x-1)^{2} \geq 0\) . Nên:

\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1

Thay x=1 vào D

GTNN D=2017

31 tháng 3 2019

xin lỗi mình lỡ tìm max rồi

8 tháng 3 2019

Cho đường tròn (o)  Và điểm A khánh  nằm ngoài đường tròn từ A vê 2 tiếp tuyến AB, AC với đường tròn . D nằm giữa A và E tia phân giác của góc DBE cắt DE ở I 

a)  chứng minh rằng AB2 =AD * AE

b) Chứng minh rằng BD/BE=CD/CE

a: Ta có: \(A=\left(\dfrac{4x}{\left(x-2\right)\left(x+2\right)}+\dfrac{2x-4}{x+2}\right)\cdot\dfrac{x+2}{2x}-\dfrac{2}{x-2}\)

\(=\dfrac{4x+2\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{2x}-\dfrac{2}{x-2}\)

\(=\dfrac{4x+2x^2-8x+8}{x-2}\cdot\dfrac{1}{2x}-\dfrac{2}{x-2}\)

\(=\dfrac{2x^2-12x+8}{2x\left(x-2\right)}-\dfrac{2}{x-2}\)

\(=\dfrac{2x^2-12x+8-4x}{2x\left(x-2\right)}=\dfrac{2x^2-16x+8}{2x\left(x-2\right)}\)

\(=\dfrac{x^2-8x+4}{x\left(x-2\right)}\)

b: Thay x=4 vào A, ta được:

\(A=\dfrac{4^2-8\cdot4+4}{4\cdot\left(4-2\right)}=\dfrac{-12}{4\cdot2}=\dfrac{-12}{8}=-\dfrac{3}{2}\)

22 tháng 2 2017

k biet lam

26 tháng 3 2020

\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)

\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)

a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)

\(\Rightarrow P\le\frac{1}{5}\)

Dấu "=" xảy ra khi x=-1

\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)

Đặt \(a=\frac{1}{x+1}\)

\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)

24 tháng 1 2021

Bài 1 

Ta có : \(\frac{2x+2}{x^2-1}=0\)ĐK : \(x\ne\pm1\)

\(\Leftrightarrow2x+2=0\Leftrightarrow x=-1\)( ktm )

Bài 2 : 

Ta có : \(\frac{2x+3}{-x+5}=\frac{3}{4}\)ĐK : \(x\ne5\)

\(\Leftrightarrow8x+12=-3x+15\Leftrightarrow11x=3\Leftrightarrow x=\frac{3}{11}\)

Vậy phương trình có tập nghiệm là S = { 3/11 }

12 tháng 3 2019

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{8x}{x^2-1}\right):\left(\frac{2x-2x^2-6}{x^2-1}-\frac{2}{x-1}\right)\)

\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{8x}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{2x-2x^2-6}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\)

\(A=\left(\frac{x^2+2x+1-x^2+2x-1-8x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2x-2x^2-6-2x-2}{\left(x+1\right)\left(x-1\right)}\right)\)

\(A=\left(\frac{4x-8x}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)\left(x+1\right)}{-2x^2-8}\)

.......... 

12 tháng 3 2019

\(\frac{x+32}{2008}+\frac{x+31}{2009}+\frac{x+29}{2011}+\frac{x+28}{2012}+\frac{x+2056}{4}=0\) \(=0\)

\(\Leftrightarrow\)\(\frac{x+32}{2008}+1+\frac{x+31}{2009}+1+\frac{x+29}{2011}+1\)\(+\frac{x+28}{2012}+1+\frac{x+2056}{4}-4\)\(=0\)

\(\Leftrightarrow\)\(\frac{x+32}{2008}+\frac{2008}{2008}+\frac{x+31}{2009}+\frac{2009}{2009}+\)\(\frac{x+29}{2011}+\frac{2011}{2011}+\frac{x+28}{2012}+\frac{2012}{2012}+\)\(\frac{x+2056}{4}-\frac{16}{4}\)\(=0\)

\(\Leftrightarrow\)\(\frac{x+32+2008}{2008}+\frac{x+31+2009}{2009}\)\(+\frac{x+29+2011}{2011}+\frac{x+28+2012}{2012}\)\(+\frac{x+2056-16}{4}\)\(=0\)

\(\Leftrightarrow\)\(\frac{x+2040}{2008}+\frac{x+2040}{2009}+\frac{x+2040}{2011}\)\(+\frac{x+2040}{2012}+\frac{x+2040}{4}=0\)

\(\Leftrightarrow\)\(\left(x+2040\right).\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+2040=0\\\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}=0\end{cases}}\)(vô lí)

\(\Leftrightarrow\)\(x=-2040\)

Vậy phương trình có nghiệm là : x = -2040