Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2n-1}{n-3}\)
\(A=\frac{2n-6+5}{n-3}\)
\(A=2+\frac{5}{n-3}\)
Để A nguyên \(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\in\left(1;-1;5;-5\right)\)
\(\Rightarrow n\in\left(4;2;8;-2\right)\)
....
a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên
b) Ko hiểu
***
A=n+1n−2n+1n−2
a. để B là phân số thì n-2 khác 0 => n khác 2
b.A=n+1n−2n+1n−2= n−2+3n−2n−2+3n−2= n−2n−2n−2n−2+3n−23n−2=1+3n−23n−2
để B nguyên khi n-2 là ước của 3
ta có ước 3= (-1;1;3;-3)
nên n-2=1=> n=3
n-2=-1=> n=1
n-2=3=> n=5
n-2=-3=> n=-1
vậy để A nguyên thì n=(-1;1;3;5)
a) Ta có:
Để M = \(\frac{x+3}{2}\)\(\in\)Z <=> \(x+3⋮2\) <=> \(x+3\in\)B(2) = {0; 2; 4; ....}
<=> \(x\in\){-3; -1; 1; ....}
b) Để N = \(\frac{7}{x-1}\)\(\in\)Z <=> \(7⋮x-1\) <=> \(x-1\in\)Ư(7) = {1; -1; 7; -7}
Lập bảng :
x - 1 | 1 | -1 | 7 | -7 |
x | 2 | 0 | 8 | -6 |
Vậy ...
c) Ta có: P = \(\frac{x-1}{x+1}=\frac{x+1-2}{x+1}=1-\frac{2}{x+1}\)
Để P \(\in\)Z <=> \(2⋮x+1\) <=> \(x+1\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng:
x + 1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy ...
để M nguyên thì \(\frac{x+3}{2}\) nguyên
=> (x+3) \(\in\)Ư(2)={-2:-1:1:2}
lập bảng ra tìm x nha bn ~!!
mấy ý kia tương tự !
\(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\)
\(A=\left(-1\right)^{2n+n+n+1}\)
\(A=\left(-1\right)^{4n+1}\)
\(B=\left(10000-1^2\right).\left(10000-2^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-100^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-10000\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...0\left(10000-1000^2\right)\)
\(B=0\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...0....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=0\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-10^3\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-1000\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...0}\)
\(D=1999^0\)
\(D=1\)
Cái này dễ mà em
a ) Để \(\dfrac{3}{n-1}\) là một số nguyên thì => 3 \(⋮\) (n - 1) hay n - 1 \(\in\) Ư (3) = { \(\pm\)1 , \(\pm\)3 }
=> n-1 = 1 => n= 2
n-1 = 3 => n= 4
n-1 = -1 => n= 0
n-1 = -3 => n= -2
Vậy n = 2 , n= -2 , n= 0 , n= 4
câu b ) tương tự nha em
<=> 33n+6 : 32n+4 = 34
<=> 33n+6-2n-4 = 34
<=> 3n+2 = 34
=> n + 2 = 4
<=> n = 2
Vậy n = 2
\(A=\dfrac{n-2}{n+3}\)
\(A\) là số nguyên \(\Leftrightarrow n+3=1\)
\(\Leftrightarrow n=-2\)
\(B=\dfrac{2n-1}{n+1}\)
\(B\) là số nguyên \(\Leftrightarrow n+1=1\)
\(\Leftrightarrow n=0\)
\(C=\dfrac{2n+3}{n+2}\)
\(C\) là số nguyên \(\Leftrightarrow n+2=1\)
\(\Leftrightarrow n=-1\)
Ta có:A=\(\dfrac{n-2}{n+3}=\dfrac{\left(n+3\right)-5}{n+3}=1-\dfrac{5}{n+3}\)
Để A∈Z=>\(\dfrac{5}{n+3}\)∈Z
=>5⋮ n+3
=>n+3∈Ư(5)=\(\left\{\pm1;\pm5\right\}\)
=>n∈\(\left\{-2;-4;2;-8\right\}\)
Ta có:B=\(\dfrac{2n-1}{n+1}=\dfrac{2\left(n+1\right)-3}{n+1}=2-\dfrac{3}{n+1}\)
Để B∈Z=>\(\dfrac{3}{n+1}\)∈Z=>3⋮n+1
=>n+1∈Ư(3)=\(\left\{\pm1;\pm3\right\}\)
=>n∈\(\left\{0;-2;2;-4\right\}\)
ta có :C=\(\dfrac{2n+3}{n+2}=\dfrac{2.\left(n+2\right)-1}{n+2}=2-\dfrac{1}{n+2}\)
Để C∈Z=>\(\dfrac{1}{n+2}\)∈Z=>1⋮n+2
=>n+2∈Ư(1)=\(\pm\)1
=>n=-1;-3
\(\dfrac{2n+1}{n-1}=\dfrac{2n-2+3}{n-1}=\dfrac{2n-2}{n-1}+\dfrac{3}{n-1}=2+\dfrac{3}{n-1}\)
\(\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét ước
\(n^2+1⋮n+2\)
\(\Rightarrow n^2+2n-2n+1⋮n+2\)
\(\Rightarrow n^2+2n-2n-4+5⋮n+2\)
\(\Rightarrow n\left(n+2\right)-2\left(n+2\right)+5⋮n+2\)
\(\Rightarrow\left(n-2\right)\left(n+2\right)+5⋮n+2\)
\(\Rightarrow5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)\)
\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét ước
\(\dfrac{n^2-3n+2}{n+1}\)
\(\Rightarrow n^2-3n+2⋮n+1\)
\(\Rightarrow n^2+n-4n+2⋮n+1\)
\(\Rightarrow n^2+n-4n-4+6⋮n+1\)
\(\Rightarrow n\left(n+1\right)-4\left(n+1\right)+6⋮n+1\)
\(\Rightarrow\left(n-4\right)\left(n+1\right)+6⋮n+1\)
\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\)
\(Ư\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Xét ước
Do n ϵ Z ⇒ A ϵ Z.
\(A=\dfrac{2\left(n-1\right)+5}{n-1}\)
\(A=2+\dfrac{5}{n-1}\)
\(\Rightarrow5⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\in\left\{1;-1;5;-5\right\}\)
Ta có bảng giá trị:
⇒ Để A đạt GTNN thì A = -3 → n = 0
GTLN thì A = 7 → n = 2