Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)
b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)
c, Thay x = 2 ; y = 3 vào hàm số y ta được :
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)
d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0
Thay x = 0 ; y = 9 vào hàm số y ta được :
\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)
e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0
Thay x = 10 ; y = 0 vào hàm số y ta được :
\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)
f, Ta có : y = ( m + 5 )x + 2m - 10 => a = m + 5 ; b = 2m - 10 ( d1 )
y = 2x - 1 => a = 2 ; y = -1 ( d2 )
Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)
g, h cái này mình quên rồi, xin lỗi )):
1. Vì \((d_1)\parallel (d_2)\) \(\Rightarrow\left\{{}\begin{matrix}m-1=-2\\m-2\ne3\end{matrix}\right.\Rightarrow m=-1\)
2.a) (P) đi qua \(M\left(1;2\right)\Rightarrow2=a\Rightarrow y=2x^2\)
bạn tự vẽ nha
b) Gọi pt đường thẳng AB là \(y=ax+b\)
\(\Rightarrow\left\{{}\begin{matrix}3=2a+b\\0=-a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3=2a+b\left(1\right)\\0=-2a+2b\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)+\left(2\right)\Rightarrow3b=3\Rightarrow b=1\Rightarrow a=1\Rightarrow y=x+1\)
pt hoành độ giao điểm \(2x^2-x-1=0\Rightarrow\left(x-1\right)\left(2x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2\\y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\) tọa độ của 2 giao điểm là \(\left(1,2\right)\) và\(\left(-\dfrac{1}{2},\dfrac{1}{2}\right)\)
a: Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay m=1/2
a) Để \(\left(d\right)\) đi qua \(M\left(-2;3\right)\) thì \(3=2.\left(-2\right)+m\)
\(\Rightarrow m-4=3\Rightarrow m=7\)
b) Xét phương trình hoành độ giao điểm: \(2x^2=2x+m\Rightarrow2x^2-2x-m=0\)
Ta có: \(\Delta'=1^2+2m=1+2m\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow1+2m>0\Leftrightarrow m>-\dfrac{1}{2}\)
Khi đó, áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
Để \(\left(1-x_1x_2\right)^2+2\left(y_1+y_2\right)=16\)
\(\Leftrightarrow\left(1-x_1x_2\right)^2+2\left(2x_1^2+2x_2^2\right)=16\\ \Leftrightarrow\left(1-x_1x_2\right)^2+4\left(x_1+x_2\right)^2-8x_1x_2-16=0\)
\(\Leftrightarrow\left(1-\dfrac{m}{2}\right)^2+4.1^2-8.\dfrac{m}{2}-16=0\\ \Leftrightarrow\dfrac{m^2}{4}-m+1+4-4m-16=0\\ \Leftrightarrow\dfrac{m^2}{4}-5m-11=0\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=22\end{matrix}\right.\left(TM\right)\)