Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 1,12(32) = 1,12 + 0,0032
Mà 0,0032 = 32/9990
Nên : 1,12(32) = 28/25 + 32/9990 = 556/495
Nhập vào máy : Sích mak
công thức (2n - 1) ( 2n + 1) x chạy từ 1 đến 15 ok
a) Thay \(x=\frac{16}{9}\) vào biểu thức ta có:
\(A=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Vậy \(A=7\)
Thay \(x=\frac{25}{9}\) vào biểu thức ta có:
\(A=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
Vậy \(A=4\)
a) \(\sqrt{0,09}-\sqrt{0,64}=\frac{-1}{2}=-0,5\)
b) \(0,1\cdot\sqrt{225}-\sqrt{\frac{1}{4}}=0,1\cdot15-\frac{1}{2}=1\)
c) \(\sqrt{0,36}\cdot\sqrt{\frac{25}{16}+\frac{1}{4}}=\frac{3\sqrt{29}}{20}\)
d) đề baì có sai ko ban?
Để A là số nguyên thì 9 \(⋮\)\(\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
Lập bảng ta có :
\(\sqrt{x}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
x | 36 | 16 | 64 | 4 | 196 | không tồn tại |
Vậy x = ....
Biến đổi : \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Do B là số nguyên nên \(\frac{4}{\sqrt{x}-3}\)phải là số nguyên ( 1 )
\(\Rightarrow4⋮\sqrt{x}-3\)\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Lập bảng ta có :
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
x | 16 | 4 | 25 | 1 | 49 | không tồn tại |
Vậy x = ....
\(S=\frac{1}{\sqrt{2}}\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+...+\frac{1}{\sqrt{29}}-\frac{1}{\sqrt{31}}\right)\)
\(=\frac{1}{\sqrt{2}}\left(1-\frac{1}{\sqrt{31}}\right)=\frac{1}{\sqrt{2}}.\frac{\sqrt{31}-1}{\sqrt{31}}\)
\(=\frac{\sqrt{31}-1}{\sqrt{62}}=\frac{\sqrt{62}\left(\sqrt{31}-1\right)}{62}\)