\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

a,ta có: \(a^3+b^3+c^3=3abc\)

<=>\(a^3+b^3+c^3-3abc=0\)

<=>\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

<=>\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

<=>\(\left(a+b+c\right)2\left(a^2-ab+b^2-ac-bc+c^2\right)=0\)

<=>\(\left(a+b+c\right)\left(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right)=0\)

=>a=b,a=c,b=c

=>a=b=c

thay a=b=c vào P ta đc

\(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

25 tháng 9 2017

a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0

<=> (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0

<=> \(\left[{}\begin{matrix}a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\end{matrix}\right.\)

TH1: a + b + c = 0

\(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

TH2: a = b = c

A = 2.2.2 = 8

21 tháng 10 2018

@Nguyễn Thanh Hằng đọc xong xóa đii nha

17 tháng 10 2017

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

Vì a, b, c là các số dương \(\Rightarrow a=b=c=0\) ( loại )

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow a=b=c\) ( tự chứng minh )

\(\Rightarrow M=\left(\dfrac{a}{b}-1\right)+\left(\dfrac{b}{c}-1\right)+\left(\dfrac{c}{a}-1\right)=0\)

Vậy M = 0

9 tháng 4 2017

Giải:

Từ \(a^3+b^3+c^3=3abc\Leftrightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Ta xét các trường hợp:

Trường hợp \(1\): Nếu \(a+b+c=0\) thì:

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

Thay vào \(P\) ta có:

\(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{c}\right)\)

\(=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=\dfrac{\cdot\left(-c\right).\left(-a\right).\left(-b\right)}{b.c.a}=-1\)

Trường hợp \(2\): Nếu \(a=b=c\) thì:

\(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)

\(=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\)

\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(=2.2.2=8\)

Vậy \(P=-1\) hoặc \(P=8\)

8 tháng 4 2017

ta có : a3+b3+c3-3abc=0

\(\Rightarrow\)(a+b)3+c3-3abc-3a2b-3ab2=0

\(\Rightarrow\)(a+b+c)(a2+b2+c2+2ab-ac-bc)-3ab(a+b+c)=0

\(\Rightarrow\)(a+b+c)(a2+b2+c2-ab-ac-bc)=0

\(\Rightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)

\(\Rightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\\\left(a+b+c\right)^2+a^2+b^2+c^2=0\Leftrightarrow a=b=c=0\left(bỏ\right)\end{matrix}\right.\)ta có P=(1+\(\dfrac{a}{b}\))(1+\(\dfrac{b}{c}\))(1+\(\dfrac{c}{a}\))

\(\Leftrightarrow\)p=\(\left(\dfrac{b+a}{b}\right)\left(\dfrac{c+b}{c}\right)\left(\dfrac{a+c}{a}\right)\)

\(\Leftrightarrow P=\left(\dfrac{-c}{b}\right)\left(\dfrac{-a}{c}\right)\left(\dfrac{-b}{a}\right)\)

\(\Leftrightarrow\)P=-1

12 tháng 4 2018

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)(tự nhân lại rồi phân tích)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

+)Xét a+b+c=0\(\Rightarrow P=\dfrac{b+a}{b}\cdot\dfrac{c+b}{c}\cdot\dfrac{a+c}{a}=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}=-1\)

+Xét \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\dfrac{1}{2}\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow P=2\cdot2\cdot2=8\)

7 tháng 10 2017

Áp dụng bđt AM-GM cho 2 số dương:

\(a^3+b^3+c^3\ge3abc\)

Dấu "=" xảy ra khi:

\(a=b=c\)

Khi đó:

\(\left\{{}\begin{matrix}\dfrac{a}{b}=1\\\dfrac{b}{c}=1\\\dfrac{a}{c}=1\end{matrix}\right.\) \(\Leftrightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{a}{c}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

10 tháng 10 2017

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a+b+c=0\) hoặc \(a=b=c\) (bn tự chứng minh)

+) \(a+b+c=0\Rightarrow a+b=-c;b+c=-a;a+c=-b\)\(\Rightarrow A=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)

\(=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

+) \(a=b=c\Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

10 tháng 2 2018

\(a^3+b^3+c^3=3abc\\ \Rightarrow a^3+b^3+c^3-3abc=0\\ \Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\\ \Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\left(a+b+c\ne0\right)\\ \Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\\ \Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\\ \Rightarrow a=b=c\\ \Rightarrow B=\dfrac{2}{a}.\dfrac{2}{b}.\dfrac{2}{c}=\dfrac{8}{abc}\)

1 tháng 10 2017

Từ \(a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a+b+c=0\) hoặc \(a=b;b=c;c=a\) (bn tự chứng minh)

Với \(a+b+c=0\Rightarrow a+b=-c;b+c=-a;a+c=-b\)

Ta có: \(A=\left(\dfrac{a}{b}+1\right).\left(\dfrac{b}{c}+1\right)\left(\dfrac{c}{a}+1\right)\)

\(=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

Với \(a=b;b=c;c=a\)

\(\Rightarrow A=\dfrac{a+b}{b}.\dfrac{b+c}{c}+\dfrac{c+a}{a}=\dfrac{2b}{b}.\dfrac{2c}{c}.\dfrac{2a}{a}=8\)