\(\frac{6^{10}x-3^7}{9^8x4^5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

a) A = \(\frac{45^{10}.5^{10}}{75^{10}}=\frac{\left(5.3^2\right)^{10}.5^{10}}{\left(5^2.3\right)^{10}}=\frac{5^{10}.3^{20}.5^{10}}{5^{20}.3^{10}}=\frac{5^{20}.3^{10}}{5^{20}}=3^{10}=59049\)

b) B = \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,2.2^2\right)^5}{\left(0,2.2\right)^6}=\frac{\left(0,2\right)^5.2^{10}}{\left(0,2\right)^6.2^6}=\frac{2^4}{0,2}=\frac{16}{0,2}=80\)

c) C = \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{2^{15}}=3^2=9\)

30 tháng 7 2019

\(A=\frac{\left(9^{10}×5^{10}×5^{10}\right)}{\left(25^{10}×3^{10}\right)}\)

\(A=\frac{\left(3^{20}×5^{20}\right)}{\left(5^{20}×3^{10}\right)}\)

\(A=\frac{3^{20}}{3^{10}}\)

\(A=3^{10}\)

22 tháng 7 2016

a.

\(\frac{45^{10}\times5^{20}}{75^{15}}=\frac{\left(3^2\times5\right)^{10}\times5^{20}}{\left(3\times5^2\right)^{15}}=\frac{3^{20}\times5^{10}\times5^{20}}{3^{15}\times5^{30}}=3^5=243\)

b.

\(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,8\right)^5}{\left(0,4\right)^5}\times\frac{1}{\left(0,4\right)}=\left(\frac{0,8}{0,4}\right)^5\times\frac{1}{\frac{4}{10}}=2^5\times\frac{5}{2}=2^4\times5=16\times5=80\)

c.

\(\frac{2^{15}\times9^4}{6^6\times8^3}=\frac{2^{15}\times\left(3^2\right)^4}{\left(2\times3\right)^6\times\left(2^3\right)^3}=\frac{2^{15}\times3^8}{2^6\times3^6\times2^9}=3^2=9\)

Chúc bạn học tốt ^^

16 tháng 7 2018

cảm ơn bạn

25 tháng 7 2016

\(1.\frac{x-7}{2}< 0\)

\(\Leftrightarrow\frac{x-7}{2}.2< 0.2\)

\(\Leftrightarrow x-7< 0\Leftrightarrow x< 7\)

\(S=\left\{xlx< 7\right\}\)

2)\(\)Đề biểu thức sau nhân giá trị âm thì :

\(\frac{x+3}{x-5}< 0\Leftrightarrow x+3< 0\Leftrightarrow x< 3\left(Đk:x\ne5\right)\)

\(S=\left\{xlx< 3\right\}\)

3.Giá trị của x thuộc Z để biểu thức sau nhận giá trị dương:

\(x^2+x\ge0\)

\(\Leftrightarrow x\left(x+1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\ge-1\end{cases}}}\)

\(S=\left\{xlx\ge-1\right\}\)