K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2022

loading...  

8 tháng 8 2022

áp dụng định lí bézout lên tìm đc số dư trong phép chia là a*1^5+4*4^4-9

=a+64-9

=a+55

để chia hết thì a+55=0

<=>a=-55

23 tháng 10 2016

a, Gọi thương phép chia là Q(x) khi đó, ta có:

            2x+ ax +1 = (x-3).Q(x) +4

 Với x=3 ta có:   2.32 + 3a +1= 0.Q(x) +4

                                19+3a   = 4

   =>         3a= -15

    =>           a= -5

Giai tương tự với các câu còn lại hoặc có thể dùng phương pháp đồng nhất hệ số

16 tháng 11 2018

a=9

b=2,8

15 tháng 11 2017

3x+7=28

3x    =28-7

3x     =21

  x    =21:3

 x      =7

5 tháng 12 2016

a)2x(2x+7)=4(2x+7)

    2x(2x+7)-4(2x+7)=0

    (2x+7)(2x-4)=0

\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)

5 tháng 12 2016

b)Ta có:x3-4x2+ax=x3-3x2-x2+ax

                           =x2(x-3)-x(x-a)

          Để x3-4x2+ax chia hết cho x-3 thì a=3

1 tháng 3 2020

Câu 1:

a) \(\left(x^2+y^2-36\right)^2-4x^2y^2\)

\(=\left(x^2+y^2-36\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+y^2+2xy-36\right)\left(x^2+y^2-2xy-36\right)\)

\(=\left[\left(x+y\right)^2-36\right]\left[\left(x-y\right)^2-36\right]\)

\(=\left(x+y+6\right)\left(x+y-6\right)\left(x-y+6\right)\left(x-y-6\right)\)

b) \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)

\(=\left(x^2+x-3\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x-3\right)\left(x-2\right)\left(x+1\right)\)

1 tháng 3 2020

1) a) (x2 + y2 - 36)2 - 4x2y2 

= (x2 + y2 - 36 - 2xy)(x2 + y2 - 36 + 2xy)

= [(x - y)2 - 36][(x + y)2 - 36]

= (x - y - 6)(x - y  + 6)(x + y + 6)(x + y - 6)

b) (x2 + x)2 - 5(x2 + x) + 6

= (x2 + x)2 - 2(x2 + x) - 3(x2 + x) + 6

= (x2  + x)(x2 + x - 2) - 3(x2 + x - 2)

= (x2 + x - 3)(x2 + 2x - x - 2)

=  (x2 + x - 3)(x - 1)(x + 2)

2) Đặt tính là đc

25 tháng 8 2017

a) x3 + 127127 = x3  + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)

=(x + 1313)(x2 – 1313x + 1919)

b) (a + b)3 – (a - b)3    

= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]

= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)

= 2b . (3a3 + b2)

c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]

= (a + b + a – b)(a2 + 2ab + b2 – a2  +b+ a2 – 2ab + b2]

= 2a . (a2 + 3b2)

d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y  +3 . 2x . y + y3 = (2x + y)3

e) - x+ 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3