K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

\(A=x^2+5x+8=x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Dấu "=" xảy ra khi: x=-5/2

Vậy GTNN của A là 7/4 tại x=-5/2

14 tháng 2 2016

\(a.\)  Từ  \(x-2y=1\)  \(\Rightarrow\)  \(x=1+2y\)  \(\left(\text{*}\right)\)

Thay  \(x=1+2y\)  vào \(A\), khi đó, biểu thức \(A\)  trở thành

\(A=\left(1+2y\right)^2+y^2+4=1+4y+4y^2+y^2+4=5y^2+4y+5\)

\(A=5\left(y^2+\frac{4}{5}y+1\right)=5\left(y^2+2.\frac{2}{5}.y+\frac{4}{25}+\frac{21}{25}\right)=5\left(y+\frac{2}{5}\right)^2+\frac{21}{5}\ge\frac{21}{5}\)  với mọi  \(y\)

Dấu  \(''=''\)   xảy ra  \(\Leftrightarrow\)  \(\left(y+\frac{2}{5}\right)^2=0\)  \(\Leftrightarrow\)  \(y+\frac{2}{5}=0\)  \(\Leftrightarrow\)  \(y=-\frac{2}{5}\)

Thay  \(y=-\frac{2}{5}\)  vào \(\left(\text{*}\right)\), ta được \(x=\frac{1}{5}\)

Vậy,  \(A\)  đạt giá trị nhỏ nhất là  \(A_{min}=\frac{21}{5}\)  khi và chỉ khi   \(x=\frac{1}{5}\)  và  \(y=-\frac{2}{5}\)

\(b.\)  Gọi  \(Q\left(x\right)\)  là thương của phép chia và dư là \(r=ax+b\)  (vì dư trong phép chia cho  \(x^2-1\)  có bậc cao nhất là bậc nhất), với mọi  \(x\)  ta có:

\(x^{2008}-x^3+5=\left(x^2-1\right).Q\left(x\right)+ax+b\)   \(\left(\text{**}\right)\)

Với  \(x=1\)  thì  phương trình \(\left(\text{**}\right)\)  trở thành  \(5=a+b\)  \(\left(1\right)\)

Với  \(x=-1\)  thì phương trình  \(\left(\text{**}\right)\)  trở thành \(7=-a+b\)  \(\left(2\right)\)

Giải hệ phương trình  \(\left(1\right)\)  và  \(\left(2\right)\), ta được \(a=-1\)  và  \(b=6\)

Vậy, dư trong phép chia đa thức  \(x^{2008}-x^3+5\)  cho đa thức \(x^2-1\)  là  \(-x+6\)

 

27 tháng 6 2016

a) \(A=2x^2-6x=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)

Vậy GTNN của A = -9/2 khi x = 3/2.

b) \(B=x^2-x+\frac{1}{4}+y^2+6y+9+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x;y\)

Vậy, GTNN của B = 3/4 khi x=1/2 và y=-3

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)