Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 3^2003 = 3^2001.3^2 = (3^3)^667.9 = 27^667.9 = 27^667.9-9+9=9.(27^667-1)+9
Ta thấy 27^667-1 = 27^667-1^667 chia hết cho 27-1=26
=> 27^667-1 chia hết cho 13
=> 3^2003 chia 13 dư 9
Tk mk nha
Lấy 1 tờ giấy rồi đặt tính ra , xong là sẽ ra số dư ngay :)
~ Hok tốt ~
#JH
Bài của học sinh : 。丁ớ… 。…丫仓u… 。…。…吖’…。
+ Số dư của 3810 khi chia cho 10 .
\(38^{10}=\left(38^4\right)^2.38^2\)
\(=\left(.....6\right)^2.38^2\)
\(=\left(.....6\right).38^2\)
\(=\left(.....6\right).\left(.....4\right)\)
\(=\left(.....4\right)\)
\(\text{Vậy chữ số tận cùng của 3810 là 4 , vì vậy khi chia cho 10 tận cùng là 4.}\)
có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5
f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2
do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−af(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a
=(x2+1)(C(x).x+C(x)+a)+bx+c−a=(x2+1)(C(x).x+C(x)+a)+bx+c−a
Vậy bx+c−a=x+2⇒\hept{b=1c−a=2bx+c−a=x+2⇒\hept{b=1c−a=2
mặt khác ta có f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4
vậy số dư trong phép chia f(x) cho x3+x2+x+1x3+x2+x+1là 2x2+x+4
Có : 3^2003 = (3^2001).3^2 = (3^3)^667.9 = 27^667 . 9
Áp dụng tính chất a^n-b^n chia hết cho a-b với a,b,n thuộc N sao thì :
27^667.9 - 9 = 9.(27^667-1) = 9.(27^667-1^667) chia hết cho 27-1 = 26
Mà 26 chia hết cho 13 => 27^667.9-9 chia hết cho 13
=> 3^2003-9 chia hết cho 13
=> 3^2003 chia 13 dư 9
Tk mk nha