Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)chia cho \(g\left(x\right)=x-1\)
Ta có:\(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)
\(=x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)-99x+2\)
Vì x-1 chia hết cho x-1 nên \(x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)\)chia hết cho x-1
Do đó \(x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)-99x+2\) cha x-1 dư 2-99x
Vậy \(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)chia cho \(g\left(x\right)=x-1\) dư 2-99x
Không biết có đúng ko nữa
a/ Trước tiên ta chứng minh với mọi số tự nhiên \(n\ge1\)
\(x^n-1⋮\left(x-1\right)\)điều này dễ chứng minh nên mình bỏ qua nhé.
Ta có:
\(f\left(x\right)=x^{100}+x^{99}+...+x+1\)
\(=\left(x^{100}-1\right)+\left(x^{99}-1\right)+...+\left(x-1\right)+101\)
Vậy f(x) chia cho g(x) dư 101.
Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:
\(f\left(2019\right)=2020;f\left(2020\right)=2021\)
CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số
a, x2(x - 3) + 12 - 4x = 0
<=> x2(x - 3) + 4(3 - x) = 0
<=> x2(x - 3) - 4(x - 3) = 0
<=> (x - 3)(x2 - 4) = 0
<=> x - 3 = 0 hoặc x2 - 4 = 0
<=> x = 3 x2 = 4
<=> x = 3 x = 2 hoặc x = -2
b, 2(x + 5) - x2 - 5x = 0
<=> 2(x + 5) - x(x + 5) = 0
<=> (x + 5)(2 - x) = 0
<=> x + 5 = 0 hoặc 2 - x = 0
<=> x = -5 x = 2
c, 2x(x + 2019) - x - 2019 = 0
<=> 2x(x + 2019) - (x + 2019) = 0
<=> (x + 2019)(2x - 1) = 0
<=> x + 2019 = 0 hoặc 2x - 1 = 0
<=> x = -2019 2x = 1
<=> x = -2019 x = 1/2
\(f\left(x\right)\) chia \(x+1\) dư 4 \(\Rightarrow f\left(x\right)=\left(x+1\right).P\left(x\right)+4\)
\(f\left(-1\right)=\left(-1+1\right)P\left(x\right)+4=4\)
Do \(\left(x+1\right)\left(x^2+1\right)\) là đa thức bậc 3 \(\Rightarrow\) phần dư của phép chia \(f\left(x\right)\) cho \(\left(x+1\right)\left(x^2+1\right)\) là bậc 2 có dạng \(ax^2+bx+c\)
\(\Rightarrow f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+ax^2+bx+c\)(1)
\(f\left(-1\right)=a-b+c=4\) (2)
Biến đổi biểu thức (1):
\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(f\left(x\right)=\left(x^2+1\right)\left[\left(x+1\right).Q\left(x\right)+a\right]+bx+c-a\)
\(\Rightarrow f\left(x\right)\) chia \(x^2+1\) dư \(bx+c-a\)
\(\Rightarrow bx+c-a=2x+3\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)
Kết hợp (2) ta được: \(\left\{{}\begin{matrix}b=2\\c-a=3\\a-b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=2\\c=\dfrac{9}{2}\end{matrix}\right.\)
Vậy phần dư cần tìm là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)
Theo Bơdu, ta có:
\(f\left(x\right):\left(x+1\right)\) dư 4
\(\Rightarrow f\left(-1\right)=4\)
Vì đa thức chia \(\left(x+1\right)\left(x^2+1\right)\) có bậc 3 nên đa thức dư có bậc \(\le2\). Đặt đa thức dư có dạng \(ax^2+bx+c\)
Gọi \(P\left(x\right)\) là đa thức thương. Ta có:
\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+bx+c\)
\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+a-a+bx+c\)
\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left[P\left(x\right).\left(x+1\right)+a\right]+bx-a+c\)
Vì \(f\left(x\right):\left(x^2+1\right)\)dư \(2x+3\)
\(\Rightarrow bx+c-a=2x+3\)
\(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)
Lại có: \(f\left(-1\right)=ax^2+bx+c=4\)
\(\Leftrightarrow a-b+c=4\Leftrightarrow a+c-2=4\)
\(\Leftrightarrow a+c=6\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=\dfrac{9}{2}\end{matrix}\right.\)
Vậy đa thức dư là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)
a,Gọi Đa thức dư là ax+b,thương là Q(x)
Ta có:f(x)=1+x+x19+x199+x2019
=(1-x2)Q(x)+Q(x)+b
=>1+x+x19+x199+x2019=(1-x)(1+x)Q(x)+ax+b (1)
Vì (1) đúng với mọi x,thay x=1 và x=-1 ta đc:
1+1+119+1199+12019=a+b
<=>a+b=5(*)
Với x=1 ta có:
1+(-1)+(-1)99+(-1)199+(-1)2019=a(-1)+b
<=>-a+b=-3(**)
Cộng (*) và (**) vế theo vế ta đc:2b=2=>b=1
Thay b=1 vào (*) ta đc:a=4
Vậy đa thức dư là 4x+1
b,Ta có:(x+1)(x+3)(x+5)(x+7)+2019
=(x+1)(x+7)(x+5)(x+3)+2019
=(x2+8x+7)(x2+8x+15)+2019
=(x2+8x+12-5)(x2+8x+12+3)+2019
=(x2+8x+12)2-2(x2+8x+12)-15+2019
=(x2+8x+12)2-2(x2+8x+12)+2004